Бесплатное электричество: как получить электрический ток из земли и воздуха своими руками

Полезные советы по экономии электроэнергии

Традиционные рекомендации – уходя, тушите свет и утепляйте окна зимой не потеряла своей актуальности.

Удобный “режим ожидания” в современной технике незаметно расходует киловатты.

При наличии кондиционера следует позаботиться о добротных окнах и дверях

Важно также использовать прибор адекватно той площади, на которую он рассчитан. То же принцип касается и стиральных машин, перегрузка в закладке – ведет к энергопотерям

Холодильник и морозильные камеры нужно устанавливать как можно дальше от системы отопления и прямого попадания солнечных лучей, иначе их работа будет идти в усиленном режиме в течение всего года. Продукты следует охладить до комнатной температуры, прежде чем помещать их в холодильник.

Известковый налет в стиральных и посудомоечных машинах, в водонагревателях, котлах и в системе отопления увеличивает потребление энергии этими приборами. Чистка фильтров и вентиляторов кондиционера – еще один метод экономии. Соблюдение правил эксплуатации и профилактики не только продлят срок работы приборов, но и застрахуют от перерасхода электричества.

Можно установить многотарифный счетчик, и по возможности, использовать мощные электроприборы в ночное время.

Внимание к экономному расходу электроэнергии может сократить годовой объем платежей на 20-25%.

Социальный норматив потребления

Нормы расхода электроэнергии на человека в РФ устанавливаются федеральными законами, в которых закрепляется методика расчетов и применения, а также исходная величина – норматив годового потребления в расчете на одного человека. За последние два года (2017-2018) он составляет 350 кВт/ч.

Тарифное нормирование – прерогатива региональных властей, которые регулируют процесс ценообразования с учетом погодных и социальных условий. Количество зарегистрированных по адресу лиц и метраж жилплощади также используются в качестве основных параметров для калькуляции цен.

Определенную роль в этом отведена и стратегическим установкам местного и всероссийского масштаба, таким как важность экономного расходования энергии, помощь многодетным семьям и социально уязвимым группам, мотивация на установку индивидуальных счетчиков, поощрение потребления газа(или наоборот) и т.п. Для этого разрабатываются специальные градации и система коэффициентов

Законодательно закрепленные нормативы годового расхода электроэнергии используются для регулирования отношений граждан и юридических лиц с поставщиками услуг в нестандартных и спорных ситуациях: при отсутствии, неисправности или выходе из строя счетчика.

Энергия магнитного поля планеты

Земля представляет собой своего рода конденсатор сферической формы, на внутренней поверхности которой накапливается отрицательный заряд, а снаружи – положительный. Изолятором служит атмосфера – через нее проходит электрический ток, при этом разность потенциалов сохраняется. Утерянные заряды восполняются за счет магнитного поля, которое служит природным электрогенератором.

Как получить на практике электричество из земли? По сути, необходимо подсоединиться к полюсу генератора и организовать надежное заземление.

Устройство, получающее электричество из природных источников, должно состоять из следующих элементов

  • проводник;
  • заземляющий контур, к которому подсоединен проводник;
  • эмиттер (катушка Тесла, высоковольтный генератор, позволяющий электронам покидать проводник).


Схема получения электроэнергии Верхняя точка конструкции, на которой расположен эмиттер, должна располагаться на такой высоте, чтобы за счет разницы потенциалов электрического поля планеты электроны поднимались по проводнику вверх. Эмиттер их будет освобождать из металла и в виде ионов выпускать в атмосферу. Процесс будет продолжаться до тех пор, пока потенциал в верхних слоях атмосферы не станет вровень с электрическим полем планеты.

К цепи подключается потребитель энергии, причем чем эффективнее работает катушка Тесла, тем выше сила тока в цепи, тем больше (или мощнее) потребителей тока можно подключить к системе.

Так как электрическое поле окружает заземленные проводники, к которым относятся деревья, здания, различные высотные конструкции, то в городской черте верхняя часть системы должна располагаться выше всех имеющихся объектов. Своими руками создать подобную конструкцию не реально.

Видео по теме:

Подключение электросети к дому

Если разрешение получено, необходимо подготовить все, что потребуется для подключения.

У вас может не быть на руках общей схемы электросети вашего участка или дома, но перед тем, как приступить к монтажным работам по непосредственному подводу питания, должна быть продумана и составлена схема подключения электричества, на которой будет обозначено, какие автоматы будут в электрощите, какой счетчик электроэнергии вы предполагаете поставить.

Продумайте, как будете заводить электрокабель в дом, как подключать его к электрощиту. Предварительно сделайте заземление на вашем участке – оно будет необходимо для обеспечения необходимо уровня электробезопасности.

Прежде чем завести силовой электрокабель в здание, вам необходимо на наружной стене здания или на специальной опоре установить специальный, водонепроницаемый бокс, в котором будет располагаться рубильник, и осуществляться подключение электричества от столба.

Только после этого рубильника, вы подключаете электрощит в доме.

Согласно действующих тех. условий для подключения электричества, проводка в доме должна подключаться через специальные автоматы защиты: автоматический выключатель с защитой от перегрузки по току и устройство защитного отключения – так называемое УЗО.

Вы можете установить комбинированный автомат защиты, который будет совмещать в себе оба названых устройства.

Все электромонтажные работы на участке и в доме вы можете проводить самостоятельно либо обратиться к специалистам. Однако помните, что непосредственное подключение рубильника в герметичном боксе к линии электропередач – т.е. проводку кабеля от рубильника до столба, могут произвести только специалисты.

Реальные проекты в наши дни

За все последние годы, согласно вышеприведенным технологиям, ученые пытались и пытаются реализовать всего два проекта.

Первый из них начинался очень обнадеживающе. В 2000-х годах на о.Реюньон, возникла потребность в постоянной передаче 10кВт мощности на расстояние в 1 км.

Горный рельеф и местная растительность, не позволяли проложить там ни воздушные линии электропередач, ни кабельные.

Все перемещения на острове в эту точку осуществлялось исключительно на вертолетах.

Для решения проблемы в одну команду были собраны лучшие умы из разных стран. В том числе и ранее упоминавшиеся в статье, наши ученые из МГУ В.Ванке и В.Савин.

Однако в момент, когда должны были приступать к практической реализации и строительству передатчиков и приемников энергии, проект заморозили и остановили. А с началом кризиса в 2008 году и вовсе забросили.

На самом деле это очень обидно, так как теоретическая работа там была проделана колоссальная и достойная реализации.

Второй проект, выглядит более безумным чем первый. Однако на него выделяются реальные средства. Сама идея была высказана еще в 1968г физиком из США П.Глэйзером.

Он предложил на тот момент не совсем нормальную идею – вывести на геостационарную орбиту в 36000 км над землей огромный спутник. На нем расположить солнечные панели, которые будут собирать бесплатную энергию солнца.

Затем все это должно преобразовываться в пучок СВЧ волн и передаваться на землю.

Этакая “звезда смерти” в наших земных реалиях.

На земле пучок нужно поймать гигантскими антеннами и преобразовать в электричество.

Насколько огромны должны быть эти антенны? Представьте, что если спутник будет в диаметре 1км, то на земле приемник должен быть в 5 раз больше – 5км (размер Садового кольца).

Но размеры это всего лишь малая часть проблем. После всех расчетов оказалось, что такой спутник вырабатывал бы электричество мощностью в 5ГВт. При достижении земли оставалось бы всего 2ГВт. К примеру Красноярская ГЭС дает 6ГВт.

Поэтому его идею рассмотрели, посчитали и отложили в сторонку, так как все изначально упиралось в цену. Стоимость космического проекта в те времена вылезла за 1трлн.$.

Но наука к счастью не стоит на месте. Технологии совершенствуются и дешевеют. Сейчас разработку такой солнечной космической станции уже ведут несколько стран. Хотя в начале двадцатого века для беспроводной передачи электроэнергии хватало всего одного гениального человека.

Общая цена проекта упала от изначальной до 25млрд.$. Остается вопрос – увидим ли мы в ближайшее время его реализацию?

К сожалению никто вам четкого ответа не даст. Ставки делают только на вторую половину нынешнего столетия. Поэтому пока давайте довольствоваться беспроводными зарядками для смартфонов и надеяться что ученым удастся повысить их КПД. Ну или в конце концов на Земле родится второй Никола Тесла.

Источники

  • https://ectrl.ru/osveshchenie/peredacha-elektroenergii.html
  • https://amperof.ru/teoriya/besprovodnaya-peredacha-elektroenergii.html
  • https://samelectrik.ru/kak-proisxodit-peredacha-i-raspredelenie-elektroenergii.html
  • https://amperof.ru/elektroenergia/peredacha-elektroenergii-na-rasstoyanie.html
  • https://oxotnadzor.ru/kak-osushchestvlyayetsya-peredacha-elektroenergii-postoyannym-tokom/
  • https://domikelectrica.ru/3-sposoba-peredachi-energii-bez-provodov/

Правила электробезопасности

При работе с электричеством, электроустановками и электронной аппаратурой следует придерживаться простых правил электробезопасности. Не лишним будет напомнить, что соблюдение правил электробезопасности не только может избавить от неприятных ситуаций, но и в некоторых случаях сохранить жизнь.

Всем с детства известно, что электричество таит в себе смертельную угрозу, поэтому как в быту, так и в производстве следует придерживаться правил электробезопасности.

Напомним, напряжение до 1000 вольт (1Кв) не приводит к смертельным разрушениям в организме. Решающим фактором при поражении электрическим током играет величина силы тока, который проходит через тело человека.

Начинающим радиолюбителям, занимающимся ремонтом электронной аппаратуры необходимо придерживаться следующих рекомендаций. Даже для профессионалов повторение этих правил может сослужить хорошую службу

Самым опасным путём протекания тока по телу человека является направление от рук к ногам. В связи с этим, запрещается ремонтировать электроустановки и радиоаппаратуру в сырых помещениях, а так же в помещениях с цементными и иными токоведущими полами.

В любом случае, использование диэлектрического коврика заметно снижает риск поражения электрическим током.

Также опасным считается путь протекания тока от руки к руке. В этом случае путь тока будет проходить через сердце. Сердце – наиболее чувствительный орган при воздействии на него электрического тока. От воздействия электрического тока сердце может остановиться.

Чтобы избежать поражения током рука – рука можно применять следующее правило. Ввел его замечательный физик и электротехник Никола Тесла.

При необходимости прикасаться к элементам устройств (например, при проверке температурного режима элемента и др.), к которым подведено напряжение, делать это следует одной рукой, засунув другую в карман брюк или отведя за спину. Работать лучше правой рукой, убрав левую. Понятно, сердце находится слева, путь тока от левой руки к сердцу короче.

Даже, если и при соблюдении этого правила вас “дернет”, то это вряд ли приведёт к печальным последствиям.

Очень опасно поражение электрическим током, когда проводятся работы на высоте (стремянке, лестнице – при ремонте электропроводки, например). В этом случае само поражение током не столь опасно, как механические травмы, вызванные потерей координации и падении.

При работе в незнакомых помещениях (складах, подвалах) не следует использовать для опоры всевозможные металлические трубы, железные штыри. В случае если Вы коснётесь токоведущего провода одной рукой, а другая рука будет держаться за металлический заземлённый предмет, то ток потечёт от руки к руке! Помните правило Теслы!

При ремонте электрооборудования следует использовать одежду с длинными рукавами, нарукавниками. Это снизит вероятность удара током при случайном касании токоведущих частей электроустановок.

При ремонте телевизоров и других электронных аппаратов, в составе которых есть импульсные источники питания, рекомендуется использовать разделительный трансформатор.

Мощные конденсаторы (с большой ёмкостью и высоким рабочим напряжением) следует разряжать перед тем как начинать работы по монтажу или демонтажу неисправного элемента в электронной схеме.

Электролитические конденсаторы, в том числе емкость аквадага кинескопного телевизора способны долго сохранять электрический заряд. При неаккуратном касании рукой выводов заряженных конденсаторов можно получить неприятный удар током, иногда слабый ожог на теле в месте касания.

При ремонте электропроводки, электроустановок и электроники всегда желательно, а лучше обязательно! присутствие рядом человека. При чрезвычайном стечении обстоятельств вас всегда быстрее освободят от действия электрического тока и окажут первую помощь.

Нравится

Главная &raquo Мастерская &raquo Текущая страница

Также Вам будет интересно узнать:

Как получить энергию из эфира своими руками?

Микроквантовые эфирные потоки у многих подобных генераторов — главные источники, откуда поступает энергия для генераторов. Системы можно пробовать подключать через конденсаторы, литиевые батарейки. Можно выбирать различные материалы в зависимости от показателей, которые они дают. Тогда и количество кВт будет разным.

Пока что свободная энергия — явление мало изученное на практике. Поэтому сохраняется много пробелов при конструировании генераторов. Только практические эксперименты помогают найти ответ на большинство вопросов. Но многие крупные производители электронных устройств уже заинтересованы в этом направлении.

Вам это будет интересно Что такое фаза и нуль в электричестве

Как соорудить генератор свободной энергии своими руками?

Генераторы создаются на основе следующих комплектующих и приспособлений:

  • Элемент питания и резистор номиналом 2,2 КОМ. Его включать в чертёж обязательно.
  • Ферритовое колечко любой магнитной проводимости.
  • Конденсатор с ёмкостью 0,22 мкф, рассчитанный для напряжения до 250 Вольт.
  • Толстая медная шина, чей диаметр — около 2 миллиметров. В дополнение берут тонкие медные провода в эмалевой изоляции, с диаметром 0,01 мм. Тогда и радиантные установки дают результат.
  • Пластиковая или картонная трубка, чей диаметр составляет 1,5-2,5 сантиметра.
  • Любой транзистор, обладающий подходящими параметрами. Хорошо, если в базовой комплектации, помимо генератора, будет присутствовать дополнительная инструкция. Иначе невозможно заняться реализацией практических схем генераторов свободной энергии с самозапиткой.

Интересно. В случае с дополнительными развязками между питающей и высоковольтной цепями применяют специальный входной фильтр. Можно не ставить такое приспособление, а подавать напряжение напрямую.

Для сборки можно использовать плату из стеклотекстолита, либо другое основание, обладающее похожими характеристиками. Главное — чтобы поверхность вмещала радиатор со всеми необходимыми приспособлениями. На пластиковой трубке наматывают обе катушки таким образом, чтобы одна размещалась внутри другой. Виток к витку наматывают высоковольтную обмотку, тоже расположенную внутри. Иногда этого требуют и самодельные импульсные безтопливные генераторы энергии.

Форма генерируемых импульсов обязательно проверяется на работоспособность, когда сборка закончена. Для этого берут осциллограф, цифровой или электронный

При настройке следует обращать внимание только на один важный параметр — наличие крутых фронтов, которыми отличается генерируемая последовательность прямоугольных контактов

Вам это будет интересно Особенности закона Ома для переменного тока

Безтопливные генераторы

Мифы и реальность

Попытки рядовых граждан самостоятельно, в обход государственных тарифов, «добыть» электричество, обросли множеством слухов и домыслов:

Главный миф, связанный с самостоятельным получением энергии из земли, звучит так: это электричество вечно.

Опровержение: для того, чтобы в принципе извлечь электричество из земли, необходимо выполнение множества условий, в числе которых – особые качества почвы, металлический штырь или стержень, вкопанный в землю на достаточном расстоянии, и неокисляемые провода.

Ни одно из этих условий не может быть выполнено идеально, так что электричество, добываемое таким образом, совсем не вечно.

Миф второй: энергия земли бесплатна.

Опровержение: частично это так: человек может делать со своим личным земляным участком все, что угодно. Но для того, чтобы получить хоть какой-то электрический заряд, нужно много земли.

Миф третий: электричество, которое можно получить благодаря земле, имеет огромную мощность.

Опровержение: выходной мощности электричества, получаемого из земли, хватает на очень медленную зарядку простенького мобильного телефона или зажигание небольшой лампочки. Для того, чтобы вскипятить электрический чайник, зарядить ноутбук или включить холодильник, понадобится столько земли, металлических штырей и проводов, что одной семье нужны будут безграничные наделы и финансы.

Электродные котлы широко применяются при отопление дач. Электродный котел своими руками схема представлена в статье.

О преимуществах и недостатках баков аккумуляторов системы отопления вы можете почитать тут.

Рано или поздно дымоход для печи или камина нужно прочищать. Эффективные методы очистки представлены в этом обзоре.

Электроток из воздуха

Вот уж мечта многих получать халявное электричество своими руками из воздуха. Но как оказывается, не всё так просто. Хотя существует множество способов получить электричество из окружающей среды, сделать это не всегда просто. И несколько способов, которые стоит знать:

  • Электрический потенциал способен накапливаться, поэтому придуманы грозовые батареи, которые такую способность используют.
  • Хорошо многим известные ветрогенераторы способны силу ветра преобразовывать в электричество.
  • Использование ионизатора.
  • Малоизвестный генератор тороидального электричества, придуманный Стивеном Марком.
  • Бестопливный энергоисточник Капанадзе.

Ветрогенераторы успешно используются во многих странах. Существуют целые поля, заставленные такими вентиляторами. Подобные системы способны обеспечить электричеством даже завод. Но существует довольно значительный минус — из-за непредсказуемости ветра невозможно точно сказать, сколько будет выработано и сколько накоплено электроэнергии, что вызывает определённые сложности.

Грозовые батареи названы так потому, что способны накапливать потенциал из электрических разрядов, а попросту из молний. Несмотря на кажущуюся эффективность, такие системы трудно предсказуемы, как и сами молнии. Да и создать самостоятельно подобную конструкцию скорее опасно, чем сложно. Ведь они притягивают молнии до 2000 вольт, что смертельно опасно.

Тороидальный генератор С. Марка, устройство, которое вполне можно собрать в домашних условиях, оно способно питать множество домашнего оборудования. Состоит оно из трёх катушек, которые образуют резонансные частоты и магнитные вихри, что позволяет образовываться электрическому току.

Как получить энергию из эфира своими руками?

Микроквантовые эфирные потоки у многих подобных генераторов — главные источники, откуда поступает энергия для генераторов. Системы можно пробовать подключать через конденсаторы, литиевые батарейки. Можно выбирать различные материалы в зависимости от показателей, которые они дают. Тогда и количество кВт будет разным.

Пока что свободная энергия — явление мало изученное на практике. Поэтому сохраняется много пробелов при конструировании генераторов. Только практические эксперименты помогают найти ответ на большинство вопросов. Но многие крупные производители электронных устройств уже заинтересованы в этом направлении.

Физика 5-8 класс

Опыты по физике в домашних условиях для детей 5-8 классов.

Магнитный мотор

Инструменты для эксперимента:

  • микробатарейка;
  • тонкогубцы;
  • магнит;
  • спираль.

Ход эксперимента:

  1. Сторону батарейки, где нарисован минус, разместить на магните.
  2. Имея проволочную спираль, не соединять ее концы.
  3. Конструкция должна балансировать.
  4. При помощи тонкогубцев соорудить на батарейке вмятину.
  5. Проволочная конструкция размещается на микробатарейке.
  6. Сверху конструкция находится в углублении, не соприкасаясь с магнитом.

Анализ: Батарейка является источником питания, увесистой для ротора основой. Магнит проводит электричество. Рама из проволоки является ротором со встроенными щетками. При помощи микробатарейки частицы перемещаются. Электричество, под магнитным полем, осуществляет перемещение под воздействием силы Ампера.


Магнитное поле перпендикулярно силе тока, что обеспечивает движение элементов по кругу. Эксперимент демонстрирует тепловыделение. При работе мотора в течение времени, микробатарейка начнет нагреваться.

Парашют из магнита

Необходимые инструменты:

  • магнит цилиндрической формы;
  • труба из металла.

Опыт:

  1. Для начала кинуть вниз магнит, не задействовав трубу.
  2. Магнит опустится на пол.
  3. Поднять магнит, повторно кинуть в трубу.
  4. Заглянуть в трубу, наблюдать за падением магнита.

Анализ: Магнит связан с электроэнергией. Так как магнит перемещается, он может иметь влияние над магнитным полем, видоизменяя его. Круговые токи создаются за счет действия магнитного поля.

Ток создает магнитное поле, осуществляя взаимодействие с магнитом. От этого поток магнита становится меньше. Снижение магнита останавливается за счет магнита, который притягивается магнитным полем.

Водяная свечка

Инструменты для эксперимента:

  • свечка;
  • стакан с жидкостью;
  • гладкое стекло.

Ход опыта:

  1. Поджечь свечку, находящуюся в прозрачном стакане, наполненным водой.
  2. Свечка не угасает.

Анализ: По бокам от стекла располагаются свечка и стакан. Пространству между стаканом и свечой следует быть ровным, что позволит достичь горения свечки в стакане. Стекло отображает свечу, находящуюся на дистанции от стекла, равной расстоянию отображения предмета. Создается подобие горящей свечи под водой.

Водяное путешествие

Инструменты:

  • стакан с водой;
  • краска;
  • обыкновенные салфетки.

Ход эксперимента:

  1. Взять стаканы. В 3 из них налить воду, раскрасить разными цветами.
  2. Взять еще 2 стакана. Оставить их пустыми.
  3. Свернуть салфетку, часть ее положить в один из стаканов с раскрашенной водой, остаток салфетки положить в один из двух пустых стаканов.
  4. Соединить все стаканы.
  5. Салфетки вскоре напитаются водой, а стаканы, не заполненные водой, будут заполнены. Жидкость будет промежуточного цвета.
  6. Явление закончится, когда вода достигнет одинакового уровня во всех стаканах.

Анализ: По капиллярным каналам цветная вода поднимется наверх при помощи натяжной поверхности, пропитывая салфетки. 2 пустых стакана заполнятся жидкостью в связи с разным местоположением воды. Давление выровняется, уровень воды во всех стаканах станет одинаковым – перемещение воды закончится. Однородная жидкость в 5 стаканах будет на одинаковом уровне.

Ветроэлектрические установки

Вторая по популярности автономная система энергообеспечения – ветряная. Для получения электроэнергии используются ветрогенераторы.

По сути, это обычные генераторы, на ротор которых надеты лопасти. За счет ветра ротор вращается и происходит генерация электричества.

Из положительных качеств ветрогенераторов отмечается достаточно компактные размеры, относительная бесшумность работы, экологичность, долговечность. Также существует возможность самодельного изготовления такого генератора.

Но недостатков у ветряной системы больше. Первый из них – стоимость, обойдутся ветряные генераторы не дешево.

Учитывая то, что КПД ветрогенераторов невысокая, то для полного обеспечения дома электричеством, потребуется установка трех и более ветряков небольшой мощности или же одного, но достаточно производительного. И в обоих случаях затраты на приобретение будут значительными.

Опять же необходимо учитывать и климатические условия. В зонах, где средний годовой показатель скорости ветра не превышает 8 м/с, использовать ветрогенераторы будет нецелесообразно, поскольку они неспособны будут работать в оптимальном режиме.

Стоит также учитывать, что в дни полнейшего безветрия можно остаться без электричества, поэтому использовать ветряную автономную систему энергообеспечения лучше, если имеется резервный источник электроэнергии.

Как добыть энергию из воздуха

Простейшая принципиальная схема не включает в себя никаких дополнительных накопительных устройств и преобразователей. По сути, требуется только металлическая антенна и земля. Между этими проводниками устанавливается электрический потенциал. Он со временем накапливается, поэтому это непостоянная величина и рассчитать его силу практически невозможно. Такое, вырабатывающее ток, устройство работает по принципу молнии – через определенный промежуток времени происходит разряд тока (когда потенциал достиг своего максимума). Таким образом, можно извлечь из земли и воздуха достаточно большое количество полезной электроэнергии, которой будет достаточно для работы электрической установки. Её конструкция подробно описывается в труде: «Секреты свободной энергии холодного электричества».

Схема имеет свои достоинства:

  1. Простота в реализации. Опыт можно с легкостью повторить в домашних условиях;
  2. Доступность. Не нужно никаких приспособлений, самая обычная пластина из токопроводящего металла подойдет для реализации проекта.

Недостатки:

  1. Реализация схемы очень опасна. Нельзя рассчитать даже примерное количество ампер, не говоря уже про силу токового импульса;
  2. При работе образовывается своеобразный открытый контур заземления, к которому притягиваются молнии. Это является одной из самых главных причин, почему проект не «пошел в массы» — он опасен для жизни и производства. Удар молнии подчас достигает 2000 Вольт.

С этой точки зрения, свободное электричество, добытое при помощи ветрогенераторов более безопасно. Но тем ни менее, сейчас можно даже купить такой прибор (к примеру, ионизатор-люстра Чижевского).

Но есть еще один вариант рабочей схемы – это генератор TPU электричества из воздуха от Стивена Марка. Это устройство позволяет получить определенное количество электроэнергии для питания различных потребителей, причем, делает он это без какой-либо подпитки из вне. Технология запатентована и многие ученые уже повторили опыт Стивена Марка, но из-за некоторых особенностей схемы она еще не пущена в обиход.

Принцип работы прост: в кольце генератора создается резонанс токов и магнитные вихри, они способствуют появлению в металлических отводах токовых ударов. Рассмотрим наглядно, как сделать тороидальный генератор, чтобы добыть электричество из воздуха:

  1. Вам понадобится основание (это может быть кусок фанеры в форме кольца, отрезок резины, полиуретана и т. д.), две коллекторные катушки (внутренняя и внешняя) и катушки управления. Индивидуальный чертеж может иметь другие размеры, но в основании берется кольцо с наружным диаметром 230 мм, внутренним 180 мм, шириной 25 мм и толщиной 5 мм. Вырежьте из основания кольцо этого размера;
    Фото — основание
  2. Теперь нужно намотать внутреннюю коллекторную катушку. Намотка трехвитковая, производится многожильным проводом из меди. Специалистами заявляется, что и одного витка намотки будет достаточно для запитки лампочки и проведения эксперимента;
  3. Управляющих катушек – четыре штуки, каждая из них должна находиться под прямым углом, в противном случае, будут создаваться помехи магнитному полю. Намотка плоская, зазор между отдельными витками (катушками) примерно 15 мм, но это зависит от особенностей выбранного материала;
    Фото — четыре катушки
  4. Для намотки управляющих катушек могут использоваться медные одножильные провода, на описываемый размер рекомендуется делать 21 виток;
  5. Для установки последней катушки используется медный провод с изоляцией. Он наматывается по всей площади основания.
    Фото — конечная обмотка

На этом конструирование можно считать завершенным. Теперь нужно соединить выводы. Предварительно нужно между выводами обратной земли и земли установить конденсатор на 10 микрофарад. Для запитки схемы используются скоростные транзисторы и мультивибраторы. Они подбираются опытным путем, т. к. их характеристики зависят от размера основания, видов провода и некоторых других особенностей конструкции. Для управления схемой можно использовать стандартная кнопка питания (ВКЛ – ВЫКЛ). Для более подробной информации рекомендуем просмотреть видео по генератору Стивена Марка в Xvid или TVrip-качестве.

Не менее нашумевшим открытием стал генератор Капанадзе. Этот бестопливный источник энергии был презентован в Грузии, сейчас он тестируется. Генератор позволяет добывать электричество из воздуха без использования сторонних ресурсов.

В основе его работы лежит катушка Теслы, которая расположена в специальном корпусе, накапливающем электроэнергию. В свободном доступе есть видео с конференции и опыты, но нет никаких документов, реально подтверждающих существование этого изобретения. Схема не разглашается.

Бесплатное электричество из сетевого фильтра

Многие искатели бесплатного электричества наверняка находили в Интернете версии о том, что удлинитель может стать источником нескончаемой свободной энергии, образовывая замкнутую цепь. Для этого следует взять сетевой фильтр с длиной провода не менее трех метров. Из кабеля сложить катушку, диаметром не более 30 см, подключить к розетке потребителя электроэнергии, изолировать все свободные отверстия, оставив только еще одну розетку для вилки самого удлинителя.

Далее сетевому фильтру необходимо дать изначальный заряд. Легче всего это сделать, подключив удлинитель к функционирующей сети, а затем за доли секунды замкнуть в себе. Бесплатное электричество из удлинителя подойдет для питания осветительных приборов, но мощность свободной энергии в такой сети слишком мала для чего-то большего. А сам метод достаточно спорный.

Солнечные панели

Сейчас все большую популярность завоевывают солнечные источники электроэнергии. Суть такого источника проста – имеются полупроводниковые фотоэлементы, в которых при попадании на них солнечных лучей генерируется электрический заряд.

Количество вырабатываемой энергии напрямую зависит от площади фотоэлементов, поэтому они собираются в панели.

Панель площадью в 1 м. кв. способна выдать 100 Ватт мощности с напряжением 20-25 В.

Чтобы полностью обеспечить дом электричеством площадь панелей должна быть значительной.

Из положительных качеств такого источника электроэнергии является его долговечность, полная экологичность, бесшумность.

Панели требуют минимум обслуживания, а электроэнергия, выработанная ими, является полностью бесплатной и доступной.

Но есть и недостатки. Для обеспечения электроэнергии в необходимом количестве, площадь панелей может достигать значительных размеров, которые еще нужно и правильно расположить.

Энергия эта непостоянна. В солнечные дни панели будут работать с максимальным выходом, но бывают же и пасмурные дни. Поэтому общее количество выработанной электрической энергии зависит от того, сколько солнечных дней в году в регионе, где располагается дом.

Еще один недостаток, причем весомый – это стоимость панелей. Цена за каждый Ватт выработанной энергии составляет сейчас примерно 1,5 $, то есть только за панели, вырабатывающие 1 кВт электроэнергии, придется выложить 1,5 тыс. долларов. А еще потребуется покупать и остальное оборудование, необходимое для работы системы.

Поделитесь в социальных сетях:ВКонтактеFacebookTwitter
Напишите комментарий