Разновидности тепловых насосов и принципы их действия
Цель ТН это температурный обмен между носителями. Выделяют несколько разновидностей установок:
- земельные;
- воздушные;
- водяные.
От этих природных энергоносителей установка снабжает здание теплом. Принцип монтажа и работы у таких насосов несколько отличается. Устройства могут быть как открытого, так и закрытого типа.
Грунт-вода
ТН земельного вида состоит из 3 контуров. Внешний располагается в грунте. Он выполняет сбор тепловой энергии. Хладагент попадает в ТН. Затем теплоноситель переходит в испаритель. Там начинает подниматься температура. Последний контур представлен в системе отопления в здании или доме. В нём происходит циркуляция воды. Из-за этого ТН называют грунт-вода.
Внимание! В качестве теплоносителя в рассматриваемой установке используют антифриз или смешанный с водой пропиленгликоль. В ином случае в качестве вещества выступает этиленгликоль
Часто в такой системе теплоносителем бывает фреон. Этот хладагент способен при пониженной температуре превращаться из жидкости в газообразное состояние.
При закипании теплоносителя, пары попадают в конденсатор. Затем тепловая энергия попадает в последний контур, где находится вода. После того как теплоноситель остывает, он преобразуется в жидкое состояние и переходит в земельный контур. Процесс цикличен и постоянно повторяется.
Фото 1. Схема устройства конструкции с тепловым насосом грунт-вода. Красным цветом показан горячий теплоноситель, синим – холодный.
Вода-вода
Принцип работы ТН водяного типа состоит в использовании энергии с низкой температурой и преобразованием её в тепло. Насос вода-вода состоит из 3 контуров. Фреон выступает в роли первичного теплообменника.
Важно! Контур устанавливают на дне естественного водоёма. Глубина составляет не менее 3 метров над поверхностью
Вода при этом не замерзает и не опускается ниже +3—5°С.
Когда хладагент циркулирует по контуру, то вещество нагревается до 8°С. Затем теплоноситель попадает в корпус установки и в компрессор. Фреон уже на этот момент находится в газообразном состоянии. При остывании хладагента в здании он преобразуется в жидкий вид. Затем осуществляется переход вещества в первый контур. Процесс повторяется.
Вода-воздух
Принцип работы ТН, который функционирует в системе вода-воздух, похож на систему, как у холодильника. Температура низкого воздуха начинает подогревать фреон, который располагается в первом контуре.
Установка соединена с испарителем тепла и конденсатором. В тепловом излучателе фреон становится жидкостью. Во время этого процесса происходит отдача энергии системе отопления.
В жидком состоянии фреон переходит в первый контур и снова испаряется, превращаясь в газ.
Воздух-воздух
ТН воздушного типа работает с помощью вентилятора. Устройство забирает наружный воздух в контур с испарителем. В нём располагается фреон, который нагревается и расширяется. Пар переходит в компрессор и становится тёплым. Это происходит из-за воздействия повышенного давления.
Фреон после компрессора попадает в конденсатор. Там вещество теряет тепловую энергию и охлаждается. Хладагент становится жидким и полученное тепло, которое сохранил конденсатор, используют для обогрева здания. Когда фреон охладился, то возвращается к испарителю и процесс повторяется.
Для улучшения эффективности работы ТН рекомендуется на участке между тепловым излучателем и испарителем использовать дроссельный клапан. Такой цикл теплообразования называется обратным принципом Карно. Чтобы автоматизировать процесс, в систему включают элементы управления.
Фото 2. Устройство теплового насоса типа воздух-воздух. В качестве испарителя используется фреон.
Принцип работы
Все окружающее нас пространство есть энергия — нужно только уметь ее использовать. Для теплового насоса нужно, чтобы температура окружающей среды была больше 1С°. Тут следует сказать, что даже земля зимой под снегом или на некоторой глубине сохраняет тепло. Работа геотермального или любого другого теплонасоса основывается на транспортировке тепла от его источника с помощью теплоносителя к контуру отопления дома.
Схема работы прибора по пунктам:
- носитель тепла (вода, грунт, воздух) наполняет находящийся под грунтом трубопровод и нагревает его;
- затем теплоноситель транспортируется в теплообменник (испаритель) с последующей передачей тепла на внутренний контур;
- во внешнем контуре находится хладагент – жидкость с низкой точкой кипения под низким давлением. Например, фреон, вода со спиртом, гликолевая смесь. Внутри испарителя это вещество нагревается и становится газом;
- газообразный хладагент направляется в компрессор, сжимается под высоким давлением и нагревается;
- горячий газ попадает в конденсатор и там его тепловая энергия переходит к теплоносителю системы отопления дома;
- завершается цикл превращением хладагента в жидкость, и она, вследствие потери тепла, возвращается назад в систему.
Тот же принцип используется для холодильников, поэтому тепловые насосы для дома можно применять как кондиционеры для охлаждения помещения. Проще говоря, тепловой насос – это такой холодильник с обратным действием: вместо холода вырабатывается тепло.
Схемы циркуляции теплоносителей
При работе теплового насоса (ТН) используется три замкнутых контура, по которым циркулируют различные жидкости/газы — теплоносители. Каждый из них выполняет свои функции.
Контур съема потенциала энергии источника
При заборе тепла воздуха используется искусственный обдув корпуса испарителя воздушными потоками от вентиляторов.
Замкнутый цикл жидкого теплоносителя для передачи тепла водной среды или земли осуществляется по трубопроводам, которые соединяют змеевик испарителя с коллектором, утопленным на дно водоема либо заглубленным в землю на расстояние, превышающее промерзание грунта в сильные холода.
В качестве теплоносителя применяются незамерзающие жидкости на основе разбавленных водных растворов спирта. Их принято называть «антифризы» или «рассолы». Они под влиянием более высокой температуры (≥+3ºС) поднимаются к испарителю, передают ему тепло, а после охлаждения (≈-3ºС) самотеком направляются назад к источнику энергии, обеспечивая непрерывную циркуляцию.
Внутренний контур
По нему циркулирует хладагент на основе фреона, «поднимая» тепло на более высокий уровень. Под действием температуры он последовательно переходит в газообразное и жидкостное состояние.
В состав внутреннего контура входят:
- испаритель, забирающий энергию от рассолов и передающий ее фреону, который при этом закипает и становится разреженным газом;
- компрессор, сжимающий газ до высокого давления. При этом резко увеличивается температура фреона;
- конденсатор, в котором горячий газ передает свою энергию теплоносителю выходного контура, а сам остывает, переходя в жидкое состояние;
- дроссель (расширительный клапан), редуцирующий фреон за счет перепада давления до состояния насыщенного пара для поступления в испаритель. При прохождении хладагента через узкое отверстие давление теплоносителя падает до начального значения.
Выходной контур
Здесь циркулирует вода. Она обогревается в змеевике конденсатора для использования в обычной жидкостной системе отопления. При этом способе ее температура достигает порядка 35ºС, что обусловливает ее применение в системе «Теплый пол» с длинными магистралями, позволяющими равномерно передавать генерируемую энергию всему объему помещения.
Использование только радиаторов отопления, создающих меньшие объемы теплообмена с пространством комнат, не так эффективно.
Принцип работы и устройство геотермального отопления
- воздух – вода
- земля – вода
- вода – воздух
- вода – вода
- земля – воздух
- вода – вода
- воздух – воздух
- внутреннего контура , который расположен в доме. Он (они) сделан как и при обычном отоплении и состоит из труб и радиаторов. В схему могут быть добавлены теплые полы.
- внешнего контура , который имеет больший масштаб чем внутренний, хотя его размеры можно увидеть только в период планировки и монтажа. В процессе эксплуатации он невиден, поскольку находится под землей или под водой. Внутри этого контура циркулирует обычная вода или антифриз.
- ключевым элементом, который связывает внешний и внутренний контур является тепловой насос , который занимает место приблизительно как стиральная машина или котел отопления.Он состоит из:-испарителя , основная функция которого – превращение в пар жидкого хладагента. Хладагент, циркулируя по замкнутому контуру, проходит через испаритель. В нем хладагент разогревается и превращается в пар. Образующийся пар под низким давлением направляется в сторону компрессора.-компрессора , основная функция которого – повышение давления и температуры паров, образующихся в результате кипения хладагента. В компрессоре пары хладагента подвергаются действию давления и их температура возрастает. Компрессор перекачивает под большим давлением разогретый пар в сторону конденсатора.-конденсатора , основная функция которого – отдаче тепловой энергии внутреннему контуру отопительной системы. Серийные образцы, изготавливаемые промышленными предприятиями, оснащаются пластинчатыми теплообменниками. Основным материалом для таких конденсаторов служит легированная сталь или медь.Для самостоятельного изготовления теплообменника подойдет медная трубка диаметром полдюйма. Толщина стенок труб, используемых для изготовления теплообменника, должна быть не менее 1 мм. При этом змеевик рассчитыается по формуле МТ/0,8 РТ, где МТ – мощность тепловой энергии, которая выдает система; 0,8 – коэффициент теплопроводности при взаимодействии воды с материалом змеевика; РТ – разница температур воды на входе и на выходе. —терморегулирующий, или иначе дроссельный, клапан устанавливается в начале той части гидравлического контура, где циркулирующая среда высокого давления преобразуется в среду с низким давлением. Точнее дроссель в паре с компрессором делят контур теплового насоса на две части: одну с высокими параметрами давления, другую – с низкими.При прохождении через расширительный дроссельный вентиль циркулирующая по замкнутому контуру жидкость частично испаряется, вследствие чего давление вместе с температурой падают. Затем поступает в теплообменник, сообщающийся с окружающей средой. Там захватывает энергию среды и переносит ее обратно в систему. Т.е. с помощью дроссельного клапана происходит регулирование потока хладагента в сторону испарителя. При выборе клапана нужно учитывать параметры системы. Клапан должен соответствовать этим параметрам.
- Незамерзающая жидкость нагревается на глубине, под землей до температуры, к примеру, 5–7ºС и поступает в тело теплового насоса.
- Внутри агрегата стоит теплообменник и нагретая жидкость, проходя через него, отдает тепло второму контуру, после чего уходит под землю за новой «порцией тепла».
- Фреон, который испаряется во втором конуре попадает в компрессор и при сжатии его температура доходит до 100ºС, чего вполне хватает чтобы разогреть жидкость во внутреннем контуре.
- Разогретый фреон поступает в расширительный экран, где давление и температура нормализуются и все начинается снова.
Дата: 25 сентября 2021
Тепловой насос для отопления
Традиционное отопление частного дома по прежнему остается предпочтительным, если в избытке недорогие ресурсы. Вопрос, что делать, когда доступность дешевых источников ограниченна? Альтернативным решением выступает тепловой насос — опыт эксплуатации более 40 лет в странах Евросоюза, говорит нам о том, что это может быть весьма эффективно.
В Российской Федерации тепловой насос не получил должного распространения. Причиной тому два фактора. Во первых, в избытке нефть, газ, древесина. Во вторых, останавливает высокая цена и отсутствие популяризации. Сведения о тепловых насосах, весьма скудные, принцип их работы не понятный, а о преимуществах информации недостаточно.
В Европейском союзе цены на сжигаемое топливо настолько высоки, что геотермальная система отопления показывает выгоду в эксплуатации. К примеру до 95% домохозяйств в Швеции и Норвегии используют тепловые насосы как основной источник отопления. Международное энергетическое агентство, прогнозирует что тепловые насосы к 2021 году начнут обеспечивать 10 % спроса энергии на отопление в странах организации экономического сотрудничества и развития, а к 2050 году этот показатель достигнет 30%.
Насосное оборудование
Бытовые насосы и их виды
Уже более двух тысяч лет человечество использует насосное оборудование. За это время оно постоянно усовершенствовалось и приобрело множество модификаций, из которых можно выделить две основные группы:
- погружные;
- поверхностные.
Насосами откачивают воду из скважин, недр земли, колодцев, выгребных ям, увеличивают в гидравлических системах давление воды. Бытовые насосы могут быть с электрическим источником питания, с двигателем внутреннего сгорания или ручными.
Насосы в системах отопления
Самое главное достижение в использовании насосного оборудования – это возможность полностью исключить необходимость использования твёрдого топлива, газа и других покупаемых источников теплоты. В Европе владельцы своих домов стремятся к обустройству системы отопления, работающей за счёт природной энергии посредством тепловых насосов. Для отечественного рынка установка таких систем — новинка. Тепловые насосы могут быть частью интегрированных систем, обогревающих и охлаждающих помещения. Модифицируются ТН (тепловых насосов) в зависимости от источника энергии (вода, земля, воздух).
Устройство теплового насоса
Теплонасос – это холодильник, который переносит тепло изнутри наружу.
Такая система включает:
- тепловой насос;
- оборудование забора (геотермальные зонды, коллекторы);
- систему распределения тепла (радиаторы, тёплый пол, стены).
Тепловой насос состоит из:
- испарителя;
- конденсатора;
- расширительного клапана (расширительного вентиля, понижающего давление за счёт разжижения газа);
- компрессора (который сжижает газ и повышает давление).
Принцип действия
Общая модель показывает принцип работы системы. Чтобы проще понять весь процесс, будем исходить от простого к сложному. Сначала представим замкнутый контур с газом, приводимым в движение компрессором. Добавив расширительный клапан, в системе будет образовано две области: с повышенным и пониженным давлением. Будучи сжимаемым, газ нагревается, а при снижении давления – охлаждается. Причём наиболее высокая температура газа отмечается сразу при выходе из компрессора, а самая низкая температура газа в системе – в точке выхода из расширительного клапана. Добавив в систему два теплообменника, с одной стороны нагретый газ через теплообменник-конденсатор будет часть тепла отдавать потребителю, с другой – уже охлаждённый посредством теплообменника-испарителя будет поглощать тепло от внешнего источника. Эта модель обладает функциями теплового насоса.
Полноценный вид ТН представляет собой после подключения к источнику низкотемпературного тепла (геотермальным зондам) и системе отопления (радиаторам, тёплым полам и стенам).
В промежуточном контуре циркулирует охлаждающая жидкость (хладагент), температура кипения которого чуть выше -5 °С. В одной части цикла он представляет собой жидкость, а в другой – газ.
Обычно используется фреон. Первоначально он находится в жидком состоянии. По мере нагревания его температура поднимается. Нагреваясь, фреон превращается в газ с температурой около пяти градусов.
Далее по цепи газ поступает в компрессор, сжимающий его. В результате на выходе выделяется максимально возможное для установки количество тепла (от +35 до +60-65°С). После горячий газ поступает в конденсатор, где происходит передача тепла от теплоносителя контурам системы обогрева помещения.
Отдав большую часть тепловой энергии, газообразный фреон поступает в расширительный клапан. Проходя через этот вентиль, резко падает давление и температура, значения которых в точке выхода из клапана имеют наименьшие значения в цикле.
Затем движение повторяет круг.
Применение циркуляционных насосов в отоплении дома
Поскольку выше уже были упомянуты некоторые особенности эксплуатации циркуляционных насосов для воды в различных схемах отопления, следует подробнее коснуться главных черт их организации. Стоит отметить, что в любом случае нагнетатель ставится на трубе обратной подачи, если домашнее отопление подразумевает подъем жидкости на второй этаж — там устанавливается еще один экземпляр нагнетателя.
Закрытая система
Самая главная черта закрытой системы отопления — герметизация. Здесь:
- теплоноситель никак не соприкасается с воздухом в помещении;
- внутри герметичной системы трубопроводов давление выше атмосферного;
- расширительный бак построен по схеме гидрокомпенсатора, с мембраной и областью воздуха, создающего обратное давление и компенсирующая расширение теплоносителя при нагревании.
Достоинств у закрытой системы отопления множество. Это и возможность провести обессоливание теплоносителя для нулевого осадка и накипи на теплообменнике котла, и заливка антифриза для предотвращения замерзания, и возможность использовать для передачи тепла широкий ряд составов и веществ, начиная от водно-спиртового раствора, заканчивая машинным маслом.
Схема закрытой системы отопления с насосом однотрубного и двухтрубного типа выглядит следующим образом:
При установке гаек Маевского на радиаторах отопления улучшается настройка контура, не нужна отдельная система выпуска воздуха и предохранители перед циркуляционным насосом.
Открытая система отопления
Внешние характеристики открытой системы похожи на закрытую: те же трубопроводы, радиаторы отопления, расширительный бак. Но есть кардинальные отличия в механике работы.
- Основная движущая сила теплоносителя — гравитационная. Нагретая вода поднимается вверх по разгонной трубе, для увеличения циркуляции ее рекомендуют делать как можно длиннее.
- Трубы подачи и обратки располагают под наклоном.
- Расширительный бак — открытого типа. В нем теплоноситель соприкасается с воздухом.
- Давление внутри открытой системы отопления равно атмосферному.
- Циркуляционный насос, установленный на обратке подачи, выполняет роль усилителя циркуляции. Его задача состоит также в компенсации недостатков системы трубопроводов: излишнего гидравлического сопротивления из-за избыточных стыков и поворотом, нарушение углов наклона и прочего.
Открытая система отопления требует обслуживания, в частности, постоянном доливе теплоносителя для компенсации испарения из открытого бака. Также в сети трубопроводов и радиаторов постоянно идут процессы коррозии, из-за чего вода насыщается абразивными частицами, и рекомендуется устанавливать циркуляционный насос с сухим ротором.
Схема открытой системы отопления выглядит следующим образом:
Открытую систему отопления при правильных углах наклона и достаточной высоте разгонной трубы можно эксплуатировать и при отключении электропитания (прекращении работы циркуляционного насоса). Для этого в структуре трубопроводов делают байпас. Схема отопления выглядит так:
При прекращении подачи электричества достаточно открыть кран на обводной петле байпаса, чтобы система продолжила работу на гравитационной схеме циркуляции. Данный блок также делает более простым начальный запуск отопления.
Система теплый пол
В системе теплого пола правильный расчет циркуляционного насоса и выбор надежной модели — гарантия стабильной работы системы. Без принудительного нагнетания воды такая структура просто не может работать. Принцип установки насоса следующий:
- на входной патрубок подается горячая вода из котла, которая через блок смесителя перемешивается с обраткой теплого пола;
- подающий коллектор для теплого пола присоединяется к выходному патрубку насоса.
Распределительно-регулирующий узел теплого пола выглядит следующим образом:
Система работает по следующему принципу.
- На входе насоса устанавливается основной терморегулятор, управляющий смесительным узлом. Он может получать данные из внешнего источника, например, выносных датчиков в комнате.
- В подающий коллектор приходит горячая вода установленной температуры и расходится по сети теплого пола.
- Пришедшая обратка имеет более низкую температуру, чем подача из котла.
- Терморегулятор с помощью узла смесителя меняет пропорции горячего потока котла и остывшей обратки.
- Через насос подается вода установленной температуры на входной распределительный коллектор теплого пола.
Немного экономики
Как известно, разные источники тепловой энергии для отопления заметно различаются по стоимости киловатт-часа тепла.
Вот ориентировочные цены:
- Природный газ с подачей из магистрали газоснабжения — 0,7 рубля;
- Сухие дрова — 1,3 рубля;
- Пеллеты — 1,5 рубля;
- Каменный уголь — 1,6 рубля;
- Природный газ с подачей из газгольдера — 2,4 рубля;
Монтаж газгольдера для автономного газоснабжения
- Пропан-бутан в баллонах — 3 рубля;
- Дизтопливо — 3,4 рубля;
- Электроэнергия замыкает таблицу рейтинга: киловатт-час стоит от 3,5 до 5,5 рублей в зависимости от местных тарифов.
Крымские цены на топливо заметно отличаются от столичных
Выбор редакции
Многолетний опыт производства и эксплуатации тепловых насосов в Северной Европе позволил нашим соотечественникам сократить область поиска самого выгодного способа обогреть свой дом. Реальные варианты существуют под любой запрос.
Надо обеспечить теплом контур ГВС или систему отопления жилого дома до 80 — 100 м²? Рассмотрите потенциал NIBE F1155 – его «интеллектуальная» начинка экономит без ущерба теплоснабжению.
Стабильную температуру в контурах тёплого пола, СО, ГВС коттеджа в 130 м² обеспечит Daikin EGSQH –здесь задействован теплообменник ГВС (180 литров).
DANFOSS DHP-R ECO выдаёт постоянный тепловой поток одновременно для всех потребителей. Возможность создания каскада из 8 ТН позволяет обеспечить теплом объект площадью не менее 3 000 м².
Каждая из указанных моделей – не безусловный, а базовый вариант. Если вы нашли подходящий ТН – просмотрите всю линейку, изучите опциональные предложения. Ассортимент оборудования большой, есть риск пропустить свой идеальный вариант.
Принцип работы тепловых насосов
Принцип работы современного теплового насоса разработан инженером Карно. Обогрев жилья выполняется по определенному циклу. Прежде всего, используется специальный хладагент – газ, подобный фреону. Через тончайшие капилляры он под очень высоким давлением попадает в специальную камеру. Там давление значительно меньше, чем то, которое воздействовало на газ – и благодаря этому происходит довольно быстрое испарение.
Испаряясь, газ забирает тепло у стенок испарительной камеры. В последней из камер происходит активный отбор тепла у используемого контура (водного, земляного, воздушного). После этого хладагент, который находится в парообразном состоянии, сжимается посредством применения специального компрессора. Именно в этот момент и наблюдается значительное повышение температуры газа – а сам он перемещается в специальный отсек – конденсатор. Примерная температура газа в конденсаторе – 85-125 градусов.
Принцип работы тепловых насосов
Именно от этого тепла и происходит прогрев теплоносителя – это делается в специальном теплообменнике. А горячий теплоноситель легко перемещается по отопительной системе при помощи циркуляционного насоса. В том же конденсаторе происходит и охлаждение хладагента. А он, остывая, вновь возвращается к капиллярам. Именно таким образом цикл Карно постоянно повторяется.
Что такое тепловой насос
Использовать природное тепло земли для обогрева жилья проще всего при наличии в регионе геотермальных вод (как это делают в Исландии). Но такие условия большая редкость.
И в то же время тепловая энергия есть везде — надо только ее извлечь и заставить работать. Для этого и служит тепловой насос. Что он делает:
- отбирает энергию у низкотемпературных природных источников;
- аккумулирует ее, то есть поднимает температуру до высоких значений;
- отдает ее теплоносителю системы отопления.
1 — земля; 2 — циркуляция рассола; 3 — циркуляционный насос; 4 — испаритель; 5 — компрессор; 6 — конденсатор; 7 — система отопления; 8 — хладагент; 9 — дроссель
Второй контур — это и есть сам тепловой насос, внутри которого находится фреон. Цикл теплового насоса состоит из следующих этапов:
- В испарителе фреон нагревается до температуры кипения. Она зависит от типа фреона и давления в этой части системы (обычно до 5 атмосфер).
- В газообразном состоянии фреон поступает в компрессор и сжимается до 25 атмосфер, при этом его температура растет (чем больше сжатие, тем выше температура). Это и есть фаза аккумуляции тепла — из большого объема с низкой температурой переход в малый объем с высокой температурой.
- Нагретый давлением газ поступает в конденсатор, в котором происходит передача тепла теплоносителю системы отопления.
- После охлаждения фреон попадает в дроссель (он же регулятор потока или терморегулирующий вентиль). В нем давление падает, фреон конденсируется и в виде жидкости возвращается в испаритель.