Солнечные электростанции: разновидности и преимущества использования, подробное видео

Принцип работы солнечной электростанции

Солнечные электростанции, сокращенно СЭС – специальные сооружение, которые преобразуют энергию солнца в электричество. Преобразователи различаются по строению и принципу работы. Преобразование солнечной энергии происходит с помощью оптических элементов, которые отражают лучи и концентрируют их на специальный приемник, наполненный водой или маслом. При повышении температуры жидкость нагревается, выделяя пар или повышая температуру маслянистого теплоносителя. Воздушные массы запускают генератор, который вырабатывает электроэнергию.

В противном случае коэффициент полезного действия станций сводился бы к минимуму. Вогнутая конструкция зеркал с отражающим покрытием обеспечивает максимальный сбор солнечной энергии. Для бесперебойной работы некоторые конструкции оснащены мощными аккумуляторами, так как в ночное время станции не вырабатывают энергию. Главным преимуществом данных конструкций является сохранение экологического покоя окружающей среды и постоянно возобновляемый источник солнечной энергии. Солнечные станции предназначены для тепловых, бытовых, промышленных нужд.

Солнечная установка для предприятия

Солнечное электричество возможно использовать для обеспечения электроэнергией разного рода предприятий – вокзалы, торговые центры, парковки, дата-центры – перечень объектов можно продолжить на несколько страниц.

При создании солнечных установок для промышленных объектов, применяют сетевые (on grid) трехфазные инверторы, мощностью от 10 кВА и выше, в зависимости от требований. Данный тип инверторов работает исключительно при наличии напряжения в сети, синхронизация выходной мощности по напряжению и частоте основной сети электроснабжения.

В случае отключения основного электропитания, остановится и солнечная генерация. Поэтому нет возможности использования таких инверторов в качестве резервного источника питания.

Оборотная сторона этого обстоятельства – отсутствие необходимости в банке АКБ, который может стоить не менее 1/3 от стоимости всей системы. Косвенно, это ускоряет окупаемость проекта на 30-40%.

Основное преимущество установки солнечных панелей на предприятиях – это конечно же существенная экономия электроэнергии. Расчеты показывают, что при условии корректной установки и эксплуатации, для большинства случаев, любая промышленная установка вернет вложенные средства в течение 3-5 лет. Эта цифра получена для московского региона. За счет чего экономия?

  • Коммерческий объект потребляет большое количество электроэнергии, это означает, что практически все солнечное электричество будет использовано;
  • Часто, пик потребления коммерческого объекта совпадает с пиком солнечной генерации. Пример: лето, солнце в зените, магазин продуктов, максимальное потребление электроэнергии системами кондиционирования и холодильным оборудованием;
  • Стоимость киловатт часа для юридических лиц, до настоящего момента была всегда выше, чем для физических – это косвенный фактор, но он уменьшает срок окупаемости;
  • Возможность увеличения подключенной мощности, без согласования с энергосбытовой компанией.

Конструкция солнечных электростанций

Солнечная электростанция для дома представлена в виде полноценной системы, которая состоит из трех основных элементов:

  1. Солнечные модули. Они являются основой любой системы и выполняют основную функцию – ловят лучи солнца. Именно эти элементы создают электрическую энергию из солнечной. Существуют классификации солнечных модулей согласно строению фотоэлектрических модулей, конструктивным особенностям, мощности и типу функционирования. Также они могут быть стандартными или разработанными на заказ, учитывая индивидуальные чертежи, потребности здания и солнечную обстановку региона.
  2. Аккумуляторы. Актуальность данного элемента объясняется тем, что мы не постоянно видим солнце на небосводе и прямой процесс преобразования можно реализовать не круглые сутки. Именно для решения этой проблемы в солнечной электростанции присутствуют аккумуляторы, которые накапливают энергию. В дальнейшем она используется для преобразования в переменный ток.
  3. Инверторы. Этот элемент создан для преобразования постоянного тока в переменный, который так необходим для питания электрических приборов. Благодаря инвертору систему можно применять в бытовых целях, для активации работы электрических и осветительных приборов.

Частное использование

На данный момент большое распространение для частного использования, получили решения в виде готовых комплектов солнечных электростанций. Покупателю таких комплектов, не придется тратить большие силы на установку и настройку оборудования.

Отдельные части системы полностью совместимы друг с другом и требуют простой установки на крышу или стену жилого дома. Главное, чтобы данная зона хорошо освещалась в течение всего дня.

Солнечная электростанция для дома станет лучшим решением, в том случае, если вы живете в области, где есть проблемы с поставками или обрывами электричества.

Принцип работы гелиосистем для нагрева воды

КПД новых коллекторов, со специальными фильтрами для улавливания волн разной длины, радует своим значением – не менее 40 %. Обычные кремниевые панели имеют КПД не превышающий 25 %.

Срок службы нагревательных элементов, по оценкам производителей, составляет от 10 до 30 лет. Другие части системы, такие как аккумуляторные батареи и электроника, могут выйти из строя раньше – через 5–15 лет.

Принцип действия батарей основан на фотогальваническом эффекте. Лучистая энергия, проходящая через фотоэлементы, преобразуется в электрическую энергию. Доступный пример – часы и калькуляторы с фотоэлементами, уже несколько десятилетий демонстрирующие нам на примитивном уровне этот принцип работы.

Домашняя солнечная электростанция

Теперь попытаемся понять, зачем нужна электростанция на солнечных батареях для домашнего пользования.

  1. В первую очередь она позволяет решить проблему с поставками электричества.
  2. Солнечные батареи обеспечивают независимое снабжение электроэнергией.
  3. Смогут служить дополнением к существующим источникам электричества, таким как ветряк или бензиновый (дизельный) генератор.
  4. Это своего рода инвестиция. Тарифы на свет постоянно растут, а солнце светит всегда.
  5. Можно остатки электричества продавать государству.
  6. Для частного дома частично перекрывает традиционное отопление.

Параметры аккумулятора, контроллера и инвертора

Минимальная емкость аккумуляторных батарей рассчитывается таким образом, чтобы обеспечивалось нормальное питание потребителей в темное время суток. Если в этот период потребляется электричество в размере 2-3 кВт*ч, то и АКБ должна содержать аналогичный запас энергии.

В качестве примера, какие аккумуляторы выбрать, можно взять батарею на 12 В, емкостью 200 ампер-часов. Теоретически она может выдать: 12 х 200 = 2400 Вт или 2,4 кВт. Однако батареи нельзя разряжать полностью, иначе они быстро потеряют свои качества и выйдут из строя. Максимальная разрядка специализированных АКБ допускается лишь на 70%, а автомобильных – на 50%. Поэтому, фактически их потребуется в два раза больше, в противном случае потребуется обязательная ежегодная замена. Общая рабочая емкость батарей рассчитывается на основании данных о суточном потреблении.

На какую помощь можно рассчитывать от государства при установке солнечных батарей для отопления частного дома

Если вы владелец частного сектора и у вас появилось желание снизить затраты на обслуживание своего дома, в частности на отопление — вы можете смело рассчитывать на помощь от государства. В зависимости от страны в которой вы живете, вам могут быть предложены некоторые способы компенсации ваших затрат из местного или федерального бюджета. Вам может быть выделена помощь в виде:

  • частичной компенсации затрат на саму установку системы;
  • государство в лице органа, занимающегося обслуживанием электросетей, выкупает у вас «Зеленую Энергию» по завышенной цене.

Мы расскажем вам о наиболее выгодном, втором варианте.

Её особенность заключается в том, что вы постоянно торгуете электроэнергией с государством туда-сюда. В светлое время суток, когда солнце находится на пике своей активности — ваши солнечные батареи вырабатывают повышенное количество электроэнергии, которой полностью хватает на ваши затраты, а излишки вы «отдаете» назад в общую электросеть, в этом случае вы выступаете как производитель и продавец энергии. Ночью, когда ваша выработка на нуле — вы покупаете энергию обратно из сети для своих нужд: для обогрева дома, для подогрева воды в кране, для стиральной машинки, для освещения. Этот процесс повторяется изо дня в день и по итогу месяца у вас остается либо положительный, либо отрицательный баланс КилоВатт на счетчике, в зависимости от мощности солнечных батарей, которые вы установили. Если за прошедший месяц вы выработали больше КВт/ч, чем израсходовали — остаток КВт/ч выкупает у вас государство примерно за 12 евроцентов, это так называемый «Зеленый Тариф». Эти деньги приходят вам на карточку и с их помощью вы компенсируете расходы, которые вы понесли на установку этой системы. Конечно в данном случае нужен специальный счетчик, который регулирует кто-кому и что продает, но при этом вы экономите на аккумуляторах, которые устанавливались в таких системах ранее и требовали к себе повышенного ухода при огромной стоимости! Сейчас же вашим «аккумулятором» выступают городские электросети, которые могут выкупить у вас бесконечное количество электроэнергии!

В любом случае, вам необходимо обратиться в компанию, которая занимается обслуживанием и поставкой электричества в ваш дом, для уточнения деталей. Это настолько стремительно развивающийся рынок, что условия тут могут меняться по несколько раз в месяц!

Как работает солнечная электростанция

Первые солнечные электростанции появились в США, хотя идея их создания принадлежала советскому инженеру Н. В. Линицкому. Принцип работы солнечных генераторов прост: энергия Солнца преобразуется фотоэлементами батарей в солнечное излучение, передаваемое к контролеру заряда. Постоянный ток передается на инвертор, а там, преобразуясь в переменный 220 В, идет в электрическую сеть жилища. Батареи соединены в цепь, образуя систему автономной солнечной электростанции. Избыток энергии направляется в коммунальные электросети. При нехватке энергии ее восполняют из коммунальной сети, поддерживая таким образом стабильный режим напряжения и силы тока.

Сколько энергии вырабатывает Gemasolar

Годовой объем производства энергии составляет 110 ГВт-ч. Этого достаточно для обеспечения экологически чистой энергией 25 000 домов. В результате развертывания этого комплекса и с учетом количества вырабатываемой энергии, получается сократить количество выбросов углекислого газа примерно на 30 000 тонн в год.

Так Gemasolar выглядит из космоса

Естественно, такой объект не может быть дешевым, и его строительство обошлось в 171 миллион евро. Финансирование производилось из разных источников. Среди инвесторов были Европейский инвестиционный банк, Banco Popular и Banesto ICO.

Солнечная энергия

Сегодня наиболее распространено использование солнечной энергии для получения низко- и среднетемпературных теплоносителей в основном для горячего водоснабжения, подогрева воды в бассейнах, отопления, в ряде случаев для получения технологического тепла. Кроме того, солнечная энергия используется для производства электроэнергии на электростанциях, работающих либо по термодинамическому циклу, либо с прямым преобразованием солнечной радиации в электроэнергию.

Солнечная энергетика — отрасль науки и техники, разрабатывающая основы, методы и средства использования солнечного излучения или солнечной радиации для получения электрической, тепловой и других видов энергии и использования их в народном хозяйстве.

Лучистая энергия Солнца, поступающая на Землю, представляет собой самый значительный источник энергии, которым располагает человечество. Поток солнечной энергии на земную поверхность эквивалентен условному топливу в количестве 1,2 · 1014 т. Солнце, как и другие звезды, является раскаленным газом. В его составе 82% водорода, 17% гелия, остальные элементы составляют около 1%. Внутри Солнца существует область высокого давления, где температура достигает 15–20 млн град.

Земля находится от Солнца на расстоянии примерно 150 млн км. Поток солнечной радиации, достигающей Земли, по разным оценкам, составляет (7,5–10) · 107 кВт · ч/год, или (0,85–1,2) · 1014 кВт, что значительно превышает ресурсы всех других возобновляемых источников энергии.

Солнечное излучение на поверхность Земли зависит от многих факторов: широты и долготы местности, ее географических и климатических особенностей, состояния атмосферы, высоты Солнца над горизонтом и т. д.

Поток солнечного излучения на Землю меняется, достигая максимума в 2200 кВт · ч/м2 в год для северо-запада США, запада Южной Америки, части юга и севера Африки, Саудовской Аравии и центральной части Австралии. Россия находится в зоне, где поток солнечного излучения меняется в пределах от 800 до 1400 кВт · ч/м2 в год. При этом продолжительность солнечного сияния в России находится в пределах от 1700 до 2000 ч/год и несколько более. Максимум указанных значений на Земле составляет более 3600 ч/год. За год на всю территорию России поступает солнечной энергии больше, чем энергии всех российских ресурсов нефти, газа, угля и урана.

В мире сегодня солнечная энергетика развивается весьма интенсивно, занимая видное место в топливно-энергетическом комплексе ряда стран.

Безопасность в использовании станций

Владельцы мобильных или стационарных электростанций не должны забывать о необходимости проведения профилактических работ по обслуживанию батарей и их соединений не менее двух раз в год.

Нельзя забывать и о сезонной разности солнечной инсоляции, поэтому зимой мощность станции придется увеличивать путем добавления модулей. В начале лета лишние модули снимаются оставшихся будет вполне достаточно, чтобы обеспечить жильцам дома бесперебойное освещение, водоснабжение, работу бытовых электроприборов.

Следует помнить, что как бы привлекательно ни выглядело очередное достижение научной мысли, в нашем мире ничего идеального нет. Есть минусы и у СЭС:

Главный недостаток – невысокий КПД (коэффициент полезного действия), всего 20 % (например, ветряной двигатель имеет КПД 40 %). Это значит, что только пятая часть падающей на батареи световой энергии превращается в электрическую.

Говоря о минусах, следует отметить и тот факт, что ночью СЭС не работает, следовательно, необходимы большие аккумуляторы для хранения энергии.

Существенным минусом можно считать высокую цену конструкции – около миллиона рублей.

ТОП-10: MUST 750-3000-6, 3 кВт 2 кВт

Обзор

У этой модели солнечной электростанции есть возможность подключить генератор, который будет заряжать батареи.

От своих предшественников модель отличается улучшенными показателями:

  • мощностью генерации, достигшей отметки 750 Вт, что означает величину энергии, аккумулируемой от солнца в течение суток;
  • емкостью батарей, составляющей 6 кВт/ч – величины, влияющей на продолжительность функционирования нагрузок в ночное время суток;
  • величиной инверторной мощности;
  • мощностью одновременно подключенной нагрузки – 3,0 кВт;
  • пусковая мощность (пиковая) – 9 тыс. Ватт;
  • выходное напряжение — 230 В;
  • мощность установленная и номинальная – 750 Вт/ч и 3000 Вт;
  • суточная генерация – порядка 4,5 кВт/ч сутки;

Контроль за функционированием солнечной электростанции, работающей на солнечной энергии, осуществляется с помощью дисплея и индикации на светодиодах контроллера, а также инвертора.

Непрерывное обеспечение энергией возможно благодаря предельно эффективному использованию энергии солнца, обеспечиваемому непрерывным поиском наибольшей емкости с помощью контроллера заряда и собственного низкого потребления инвертора.

Преимущества

  • Система собой представляет готовое решение для энергоснабжения помещения;
  • Чистая с экологической точки зрения энергия;
  • Быстрая окупаемость – 4 года;
  • Совместное функционирование с генератором в холодное время (осенний и зимний периоды);
  • Автоматический запуск генератора, заряжающего АКБ, который в 305 раз уменьшает его время работы;
  • Простота в обслуживании и эксплуатации;
  • Продолжительный период службы;
  • Возможность наращивания емкости и мощности.

Комплектность

Состоит комплект солнечной электростанции из:

  • Панелей – 3 шт. (поликристалл);
  • Контроллера – 1шт.;
  • Зарядки и инвертора – по 1 шт.;
  • Гелиевого источника питания (батарея) – 4 шт.;
  • Щита управления DC – 1 шт.;
  • Комплекта кабелей.

Щит устанавливать между батареями солнечной электростанции для дачи и инвертором желательно, но никто не обязательно.

Для систем, использующих энергию солнца, наибольшее значение имеет величина энергии, потребляемой в сутки и расходуемой, а не мгновенный ее срез.

Стоимость

Где купитьЦена в рублях
https://moskva.tiu.ru/p43884471-solnechnaya-elektrostantsiya-must;all.html197500
https://evpatoriya.tiu.ru/p14845199-solnechnaya-elektrostantsiya-dlya;all.html218000
https://evpatoriya.tiu.ru/p43884471-solnechnaya-elektrostantsiya-must;all.html197500
https://ra-energo.ru/solarsystcombi/93800
https://www.ra-energo.ru/page2217/222700

Обзор моделей: их характеристики и цены

Как уже было сказано выше, самым главным параметром зарядного устройства, оснащенного солнечной батареей, является мощность. Мощность подобных устройств варьируется в пределах от двух до пятнадцати ватт.

Устройства, имеющие мощность до трех ватт подходят для зарядки только небольших устройств, к примеру, плееров. Она не всегда подходит для мобильных телефонов. Для телефонов подходят батареи, способные поддерживать мощность от трех ватт.

Устройства, обладающие мощностью пять с половиной шесть ватт, помимо мобильных телефонов и смартфонов могут заряжать небольшие планшеты, электронные книги и фотоаппараты а также другие достаточно функциональные устройства, имеющие относительно небольшую энергетическую емкость аккумулятора.

Для того, чтобы иметь возможность заряжать такие энергоемкие устройства, как ноутбуки и большие планшеты, необходимо приобретать зарядное устройство, оснащенное фотоэлементом, которое способно поддерживать мощность не менее девяти ватт.

От чего зависит стоимость зарядного устройства, имеющего солнечную батарею? В первую очередь от размера и мощности. Дело в том, что самый главный параметр – мощность, зависит от площади фотоэлемента, а уже потом от интенсивности свечения. Соответственно чем больше поверхность элемента, тем больше энергии получает заряжаемое устройство после преобразования. Как уже было сказано выше кремний является дорогим материалом, поэтому и устройство, созданное с его помощью, будет стоит немало.

Также на стоимость зарядного устройства, оснащенного солнечной батарей, оказывают и другие материалы, использовавшиеся для производства. Основной функцией элементов, выполненных из данных материалов, является обеспечение защиты устройства и передача энергии.

Для передачи энергии лучше всего подходят кабели из медного сплава, которые отличатся меньшими потерями, однако они более дорогие. Алюминиевые более дешевые, однако, и показатель потери энергии при ее передаче выше.

Если устройство изготовлено с использованием высокопрочных материалов, то оно также будет стоить дороже. Однако оно и прослужит дольше, поскольку защищено от повреждений.

Стоимость устройств, имеющих небольшую мощность – три и менее ватт, варьируется в пределах от одной тысячи рублей. Зарядные устройства, которые оснащаются фотоэлементами, имеющие мощность пять-шесть ватт, стоит от полутора до двух тысячи. Более двух тысяч стоят устройства мощностью около девяти и более ватт.

Примеры моделей зарядок для солнечных батарей:

Sun-Battery 2198

Устройство имеет небольшие размеры, мощность пять ватт и используется для зарядки телефонов и плеера.

Стоимость 1200 рублей.

Может использоваться для подзарядки мобильных устройств и навигаторов.

Стоимость 1750 рублей.

Мощностью пять с половиной ватт подходит для зарядки планшетов и мобильных устройств.

Стоимость 2075 рублей.

SITITEK Sun-Battery SC-09

Имеющая мощность пять ватт, подходит для подзарядки мелкой оргтехники.

Стоимость 3500 рублей.

POWERTRAVELLER SOLARGORILLA

Имеет высокую выходную мощность до 20 ватт и подходит для зарядки всех мобильных устройств, а также ноутбуков.

Стоимость 15990 рублей.

Как разные страны мира выполняют планы по энергопереходу

Страны по всему миру поставили себе амбициозные задачи по переходу на возобновляемую энергию. Цели стали частью и Парижского соглашения — к 2030 году решения с нулевым выбросом углерода могут быть конкурентоспособными в секторах, на которые приходится более 70% глобальных выбросов. Сделать это планируется за счет энергетического перехода — процесса замены угольной экономики возобновляемой энергетикой. В 2020 году, несмотря на пандемию и экономическую рецессию, многие города, страны и компании продолжали объявлять или осуществлять планы по декарбонизации.

Зеленая экономика

Как государству продвигать экологическую повестку

Ожидается, что в 2021 году Индия внесет самый большой вклад в развитие возобновляемой энергетики. Здесь планируют запустить ряд ветряных и солнечных проектов.

В Евросоюзе также прогнозируется скачок в приросте мощностей в 2021 году. Здесь даже в условиях пандемии не забывают о Green Deal — крупнейшей в истории ЕС коррекции экономического курса. Цель проекта — сформировать в ЕС углеродно-нейтральное пространство к 2030 году. Для этого планируется сократить на 40% объем выбросов парниковых газов от уровня 1990 года и увеличить долю энергии из возобновляемых источников до 32% в общей структуре энергопотребления. Как посчитала Еврокомиссия, достичь этих задач можно будет с помощью ежегодных инвестиций в размере €260 млрд. Доля ВИЭ в энергосистеме ЕС также постоянно растет. Так, около 40% электроэнергии в первом полугодии 2020 года в ЕС было произведено из возобновляемых источников.

Пока же в лидерах инвестиций в развитие возобновляемой энергетики — Китай, США, Япония и Великобритания. С тех пор, как BloombergNEF начал отслеживать эти данные, глобальные инвестиции в ветровую и солнечную энергетику, биотопливо, биомассу и отходы, малую гидроэлектроэнергетику увеличились почти на порядок. В годовом выражении вложения в чистую энергию выросли с $33 млрд до более чем $300 млрд за 20 лет.

Китай за десять лет стал главным производителем оборудования для возобновляемой энергетики. В первую очередь, речь идет о солнечных панелях. Семь из десяти крупнейших мировых производителей солнечных батарей — это китайские компании. В целом развитие технологий удешевило стоимость строительства новых объектов ВИЭ. Это приближает планы Китая стать углеродно нейтральным к 2060 году.

Зеленая экономика

Ставка на солнце и уголь: два лица энергетики Китая

Серьезных шагов в сторону энергоперехода ожидают и от президента США Джо Байдена. Он не только вернул страну в Парижское соглашение, но и заявил о том, что намерен добиться чистых выбросов парниковых газов и перехода на 100% экологичной энергии к 2050 году.

Также к 2050 году планируют использовать только ВИЭ Япония, Южная Корея, Новая Зеландия и . Прошедший 2020 год уже стал самым экологичным для энергосистемы Великобритании со времен промышленной революции. Страна целых 67 дней смогла обходиться без угля. От традиционных источников энергии Британия планирует отказаться уже к 2025 году.

Активно развиваются ВИЭ в Испании — по прогнозам, сектор только солнечной энергетики в стране будет расти примерно вдвое быстрее, чем в Германии.

В 2020 году Шотландия получила 97% электроэнергии из возобновляемых источников. С помощью произведенной «зеленой» энергии получилось обеспечить электронужды более чем 7 млн домохозяйств. Шотландия планирует стать углеродной нейтральной уже к 2030 году.

Этот же год выбран временем полного отказа от традиционной энергетики для Австрии, а Саудовская Аравия запланировала к 2030 году получать 50% электроэнергии от ВИЭ.

Национальные цели по доле ВИЭ среди источников энергии

(Фото: REN21)

Полная версия отчета Renewables 2020 в формате PDF (см. стр. 57)

Экономные солнечные генераторы: принцип работы

Для труднодоступных районов с перебойным обеспечением электроэнергией солнечные генераторы становятся спасением комфортного проживания. С помощью него можно решить проблемы энергоресурсов и обеспечить автономное энергообеспечение. В основном бытовые генераторы рассчитаны на 220 В. Устройства оснащены дисплеем, который отображает сообщение о работе батарей. Устанавливаются приборы на участках с большим поступлением солнечных лучей: крыша дома, стены здания, открытая местность.

Такой прибор сможет обеспечить работу бытового оборудования: холодильника, стиральной машины, зарядки компьютерных систем, работы отопительных приборов, электроинструментов и циркулярных насосов. Бесперебойная работа гарантирована на 10 – 12 часов.

Достоинства системы заключаются:

  • В автономности;
  • Не зависимости от центрального снабжения;
  • Мобильности;
  • Бесшумной работе;
  • Экологической безопасности;
  • Длительном сроке эксплуатации;
  • Компактности;
  • Возможности работать на непроветриваемых участках.

Единственным минусом является стоимость устройства, которая в последствии окупает затраты на электроэнергию.

Установка фотоэлементов

Устанавливаются они по специальной методике:

  • для увеличения производительности выставляется под углом 90 градусов к падающим лучам поверхность блоков;
  • допустимая погрешность (учитывая, что Светило движется) от перпендикулярного положения не может превышать 15 градусов;
  • при всесезонном пользовании электростанцией, необходимо угол выставить относительно широты в столько же градусов, но со знаком «+», т.е. +15 градусов;
  • если предполагается пользоваться станцией только в жаркое время, отталкиваются от значения угла в – 15 градусов.

Только, установив солнечную батарею под углом в 90 градусов к падающим лучам, можно рассчитывать на максимальную эффективность. Увеличить отдачу до полутора раз возможно, если батарею солнечную закрепить на поворотном устройстве, способном двигаться вслед за перемещением Солнца. Способ рассчитан на небольшие конструкции.

Устройство и принцип работы автономной СЭС

В комплект автономной электростанции входят:

  • Аккумуляторные батареи. На данный момент на российском рынке представлены в основном свинцовые АКБ, которые довольно дешевые, но имеют ограниченный ресурс.
  • При этом существует и другой тип АКБ — Li-Ion, которые многократно превосходят свинцовые по рабочему ресурсу, они служат дольше, но стоят дороже.
  • Солнечные модули — отвечают за преобразование солнечной энергии в постоянный электрический ток. Гетероструктурные модули имеют низкий температурный коэффициент и высокую эффективность.
  • Контролеры заряда/разряда — оптимизируют процесс энергообеспечения, минимизируют потери энергии и продлевают срок автономной работы системы.
  • Инверторы — оборудование для преобразования постоянного тока, получаемого от солнечных панелей, в переменный 220В.
  • Вспомогательные элементы — солнечный кабель, электрический щит, MC4 коннекторы.

В солнечные дни модули вырабатывают электрический ток постоянного напряжения. Этот ток поступает к контроллеру, который стабилизирует его в диапазоне, подходящем для заряда аккумуляторов. Владелец электростанции может на свое усмотрение настраивать схему работы оборудования. Первый вариант: когда АКБ получают полный заряд, излишки электроэнергии направляются к инвертору напряжения. Инвертор преобразовывает постоянный ток в переменный и подает его в энергосистему объекта. Второй вариант: система подает энергию на потребителя, а потом уже на АКБ. Когда солнечной активности нет (ночь) или ее недостаточно (пасмурный день, объект получает электрическую энергию из аккумуляторных батарей или сети при ее наличии В систему можно включать дополнительный источник альтернативной электрогенерации (обычно бензиновый, дизельный или ветровой генератор). Пример — автономная СЭС, комплект «Расширенный+» 2,32 кВт ФЭМ, 9,6 кВт/ч АКБ от АО «Мосэнергосбыт».

Схема солнечной установки. Основные элементы

Комплект системы солнечной электростанции состоит из следующих элементов:

1. Солнечные панели фотовольтаических ячеек: несколько объединённых фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток.

2. Солнечный контроллер заряда: электронное устройство, предназначенное для контролирования и управления процессом зарядки и разрядки аккумуляторной батареи. В связи с тем, что в течение дня инсоляция единицы поверхности претерпевает существенные изменения, напряжение, выдаваемое фотовольтаической панелью так же меняется. Для стабильной зарядки АКБ требуется ограниченный диапазон зарядных напряжений. Задача солнечного контроллера – сглаживание неравномерностей, вызванных инсоляцией.

Солнечные контроллеры бывают трёх типов:

  • «On-Off» контроллеры, которые при достижении определенных уровней напряжения на клеммах аккумулятора либо подключают АКБ к зарядке от солнечной батареи, либо отключают. Из-за простоты логики работы устройства уровень зарядки аккумулятора достигает всего около 70%
  • ШИМ контроллеры, благодаря широтно-импульсной модуляции тока на завершающей стадии зарядки аккумулятора позволяют добиться заряда АКБ до 100%.
  • МРРТ контроллеры являются наиболее совершенными устройствами. Они преобразуют ток и напряжение, получаемое от солнечных панелей, до наиболее оптимальных значений для зарядки аккумулятора, благодаря чему эффективность использования солнечных батарей повышается на 30%. В современных системах применяются именно MPPT контроллеры. Поэтому им нужно уделить больше внимания.  На вольт-амперной характеристике солнечной батареи, видно, что точка максимальной мощности сдвигается на графике, в зависимости от напряжения, вырабатываемого фотовольтаическими элементами. MPPT контроллер в он-лайн режиме отслеживает ток и напряжение на батарее и определяет пару ток-напряжение, при которых мощность СБ будет максимальной. Так же контроллер отслеживает состояние банка АКБ, в частности, на какой стадии заряда находятся аккумуляторы (наполнение, насыщение, выравнивание, поддержка) и на основании совокупных данных определяет оптимальный зарядныйток. Алгоритм вычисления точки максимальной мощности может отличаться для контроллеров разных производителей, что в общем случае не имеет принципиального значения.

3. Банк АКБ: накопительная ёмкость от размера которой зависит продолжительность функционирования в автономном режиме объекта, который она питает.

4. Инвертор/зарядное устройство: устройство, преобразовывающее полученный от солнечных батарей постоянный ток в переменный.

Инверторы делятся на три основных типа:

  • Автономные (off grid) – не подключенные к внешней электрической сети и предназначенные для автономных систем электроснабжения;
  • Сетевые (on grid) – работающие синхронно с централизованной сетью электроснабжения, без центральной сети они работать не будут. Кроме своих прямых функций, они обеспечивают регулировку основных эксплуатационных параметров сети: частоту напряжения, амплитуду и т.д.
  • Гибридный (hybrid) – еще называемый «аккумуляторно-сетевым» преобразователь, совмещающий свойства автономных и сетевых устройств. Такой инвертор имеет большое количество настроек для оптимизации работы солнечной системы от общей электрической сети и при наличии аккумуляторных батарей. Гибридный инвертор чаще всего работает в режиме grid support, когда при работающей системе центрального снабжения, он использует максимально возможное количество энергии, получаемой от солнца, а при отключении общей сети, он может работать в полностью автономном режиме.

5. Пульт управления или связи. Он представляет собой многофункциональное устройство связи, обеспечивающее полный обзор эффективности систем управления электроэнергией с использованием интернета. Для многих систем пульт заменяется на коммутационный модуль с Ethernet интерфейсом. Это позволяет управлять системой с ПК, планшета или телефона – хорошее решение.

6. Следящая система – трекер. Это электромеханический прибор, цель которого — отслеживать перемещение источника света. Применяется для изменения положения фотоэлектрических модулей (солнечных батарей) с целью получения максимального КПД. Из-за высокой стоимости, в домашних системах применяется редко. Часто, вместо трекера используют механическое (ручное) смещение фотоэлементов в летний и зимний режим.

Вообще, основные части системы (инвертор, банк АКБ, контроллер заряда) будут аналогичными и для других систем электрогенерации с помощью ВИЭ – ветряной генерации и микро-гидрогенерации.

Поделитесь в социальных сетях:ВКонтактеFacebookX
Напишите комментарий