Как установить
Значительная часть алюминиевых радиаторов построена по тому же принципу, как и все другие батареи отопления. В них могут быть неразъемные или наборные секции, любая конфигурация ребер, но, придерживаясь стандартов, устанавливается типизированное расстояние между трубами коллекторов.
Нормальный ряд значений для этого расстояния: 200, 300, 500, 550, 600, 700, 800 мм.
Для поколения используется штуцер с внешней резьбой, с фитингом американка или внутренней резьбой открытого меж секционного соединения.
Варианты подключения радиатора
Способы подключения определяются по схеме разводки:
- одностороннее;
- двухстороннее (верхнее, нижнее);
- диагональное.
Наибольшую теплоотдачу позволяет обеспечить диагональное подключение, когда горячая вода поступает на верхний коллектор, а выходит теплоноситель из нижнего коллектора с противоположной от ввода стороне батареи.
Кроме подсоединения к коллектору у алюминиевых радиаторов часто отводы коллекторов формируются внутренними каналами. Точки подключения выводятся компактно на небольшом расстоянии друг от друга сбоку радиатора или снизу. Для соединения с трубами используется фитинг американка, закрепленный на патрубке.
Важно определить модель радиаторов уже после выбора способа разводки и до расчета подробной схемы, чтобы было известно количество теплообменников и способ их подключения вплоть до миллиметра.
Нужно определить выгодное положение для радиатора. При установке под оконным проемом батарея должна занять не менее 2/3 ширины проема для формирования тепловой завесы. Расстояние от батареи до подоконника и от пола до нижних ребер батареи минимуму 10 см
Важно не создавать преград для активной конвекции воздуха
Схема установки и обвязки
Радиатор крепится к стене с помощью минимум двух кронштейнов. Желательно использовать крепления, предусмотренные производителем алюминиевого радиатора. На стене они фиксируются с помощью двух-четырех саморезов с дюбелями или анкерами. Расстояние от стенки регулируется выносом передней части кронштейна.
Ниже вы можете посмотреть видео с подробным описанием монтажных работ.
https://youtube.com/watch?v=Dec2T8oLb1k%3F
Что следует учесть при проведении расчетов мощности?
Проведение вычислений касаемо мощности батарей отопления – это важное дело, требующее внимания к деталям. Например, мало посчитать, какой теплоотдачей должен обладать обогреватель, чтобы нагреть помещение по всей его площади
В данном вопросе нужно учесть такие факторы, как:
- Способ подключения батареи к теплосети. Если она подсоединена перекрестным способом, то теплопотери составят всего 2%, тогда как при нижнем они увеличатся до 13%, а при однотрубной системе отопления – до 20%.
- Следует учесть регион проживания с учетом периода самых низких температур в году.
- Расчет секций алюминиевого радиатора по теплопотерям не возможен без выяснения качества теплоизоляции здания. Если взять за пример частный дом, то придется учесть в расчетах следующие показатели:
- Наличие дымохода «съедает» 10% тепла.
- Кровля приносит потерь на 20%.
- Неутепленные стены и окна по 30% каждые.
- Подвал заберет 10% тепла.
Подобные потери можно сократить, если утеплить стены, сделать качественное остекление и провести отопление на чердак и в подвал.
- Если окно в помещении выходит на север, то при подсчете мощности радиатора и количества его секций нужно к результату прибавить 10%.
- Местоположение радиатора или использование экрана так же влияют на показатели.
- Нужно точно знать, какая площадь отопления нагревается одной секцией алюминиевого радиатора. Эти данные можно получить из техпаспорта изделия.
Только учтя все нюансы, можно произвести действительно правильные расчеты мощности батареи. Если какие-то параметры определить сложно, то стоит прибавить к результату 20-30% и установить термостат, что точно лишним не будет.
Пример расчета
Если рассчитывать, сколько секций алюминиевого радиатора надо на комнату площадью 20 м2 при норме 100 Вт/м2, то так же следует вносить корректировочные коэффициенты потери тепла:
- каждое окно добавляет к показателю 0.2 кВт;
- дверь «обходится» в 0.1 кВт.
Если предполагается, что радиатор будет размещен под подоконником, то корректирующий коэффициент составит 1.04, а сама формула будет выглядеть следующим образом:
Q = (20 х 100 + 0,2 + 0,1) х 1,3 х 1,04 / 72 = 37,56
- первый показатель – это площадь комнаты;
- второй – стандартное количество Вт на м2;
- третий и четвертый указывают на то, что в комнате по одному окну и двери;
- следующий показатель – это уровень теплоотдачи алюминиевого радиатора в кВт;
- шестой – корректирующий коэффициент касаемо расположения батареи.
Все следует разделить на теплоотдачу одного ребра обогревателя. Его можно определить из таблицы от производителя, где указаны коэффициенты нагрева носителя по отношению к мощности устройства. Средний показатель для одного ребра равен 180 Вт, а корректировка – 0.4. Таким образом, умножив эти цифры, получается, что 72 Вт дает одна секция при нагреве воды до +60 градусов.
Так как округление производится в большую сторону, то максимальное количество секций в алюминиевом радиаторе конкретно для этого помещения составит 38 ребер. Для улучшения работы конструкции, ее следует разделить на 2 части по 19 ребер каждая.
Узнайте полезную информацию об алюминиевых батареях на нашем сайте:
Теплоотдача алюминиевых радиаторов: заявленная и реальная
Многолетний опыт использования батарей из алюминия показал, что заявленные в техпаспортах изделий параметры недотягивают до реальных цифр. Это не означает, что производители врут, просто они не упоминают, что данные показатели действительны в идеальных условиях эксплуатации, чего в жизни, как правило, не бывает.
Например, теплоотдача алюминиевых радиаторов, которая указывается в документах, может соответствовать истине, если между температурой воздуха и теплоносителя существует разница в 70 градусов. То есть, формула, по которой эти параметры вычисляются, выглядит следующим образом:
(tобратки+ tподачи): 2 – tвоздуха = 70 градусов
Если в техпаспорте указана мощность алюминиевого радиатора 200 Вт при разнице температур 70 °С, то при комнатной температуре +22 °С расчеты получатся следующие:
(tобратки +tподачи) = (22 + 70)х2 = +184 градуса.
Так как по гостам разница температуры в подаче и обратке не должна превышать 20 градусов, то их значение можно высчитать так:
Температура теплоносителя в подающей трубе равна 184:2 +10 = 102 градуса.
В обратной трубе она будет соответствовать 184:2 – 10 = 82 °С.
Исходя из этих вычислений, секция алюминиевого радиатора будет отдавать тепла на 200 Вт, а воздух в помещении прогреется до +22 только в случае, если температура теплоносителя равна 102 градусам. Это нереально, так как максимальный нагрев, который обеспечивают современные котлы – 80-90 градусов, а значит, указанная в техпаспорте мощность 200 Вт не соответствует истине.
Чтобы разобраться, какова реальная тепловая мощность алюминиевых радиаторов отопления, существует таблица с понижающими коэффициентами. Достаточно умножить параметры, указанные в документах, на соответствующие им коэффициенты, и будет получена реальная мощность обогревателя.
Как добавить секции к радиатору отопления
Перед установкой радиаторов необходимо совершить предварительный расчет мощности отопительных приборов и, соответственно, количества секций, необходимых и достаточных для равномерного обогрева помещения. В идеальном варианте при расчете нужно учитывать климатическую зону, в которой расположено помещение, учитывать тепловые потери через неплотности в стенах, окна (причем со своими повышающими коэффициентами в зависимости от стороны света) и так далее. Естественно, что рядовой потребитель при самостоятельной покупке радиаторов не будет заниматься таким сложным и подробным расчетом. Существует специальная методика, в соответствии со СНиП, которая дает приблизительное понятие о необходимом количестве секций радиатора для того или иного помещения.
Но никто не застрахован от возникновения такой ситуации: вроде как и посчитано все правильно, и установлено со всеми правилами монтажа, и теплоноситель систематически поступает в радиатор, и поступает с нужной температурой, но вот в комнате все равно прохладно. Это значит, что придется задуматься о том, как добавить секции к радиатору отопления. Но для начала, чтобы не рубить с плеча, можно проверить состояние имеющихся секций изнутри, так как очень часто причиной похолодания в комнате становится засоренность радиатора. Для этого радиаторным ключом необходимо снять весь радиатор и пропустить через него большой поток воды. Если в ходе этой процедуры затрудненного выхода воды и изменение ее цвета не наблюдается, то установка дополнительных секций становится-таки необходимым мероприятием.
Приобретать и устанавливать дополнительные секции необходимо только идентичные тем, которые уже имеются в домашнем радиаторе. Нельзя к алюминиевому радиатору дополнительно добавить стальную или биметаллическую секцию. Поиск секций радиатора необходимо производить только в специализированных магазинах.
Можно доверить процесс монтажа специализированной организации, но можно попробовать добавить секции к радиатору отопления и своими руками, вооружившись необходимыми инструментами и инвентарем.
На первом этапе радиаторным ключом нужно открутить футорку с той стороны радиатора, куда планируется добавить дополнительные секции. На место крепления навинчивается ниппель (соединительная гайка)
Необходимо обязательно обратить внимание и учесть направление нарезки резьбы на ниппеле:
- в сторону добавляемого элемента направляется правая сторона;
- в сторону уже имеющихся секций направляется левая сторона ниппеля.
Для обеспечения герметичности добавляемых секций на ниппель следует насадить специальные межсекционные прокладки, из паронита, резины или гелевые. Это предотвратит протекание радиатора при дальнейшей эксплуатации. Процедуру наживления прокладок необходимо проводить максимально аккуратно и бережно, по возможности придерживая их пальцами. Этим будет обеспечена гарантия того, что прокладки будут «сидеть» ровно, без перекосов.
Затягивать резьбу необходимо медленно, без рывков, чтобы не повредить тонкую металлическую нарезку радиатора до момента полной его сборки.
Присоединение дополнительных секций к радиатору
Обновленный радиатор фиксируется на кронштейны и крепежные крюки, затем соединяется с трубопроводом отопительной системы. Эту операцию проводится гаечным ключом необходимого диаметра. В месте соединения обновленного радиатора и трубопровода (а конкретно на резьбу) следует использовать паклю для лучшей герметизации соединения.
Присоединение радиатора к системе отопления
Перед тем, как начать использовать радиатор по назначению, его необходимо проверить его на отсутствие протечек. Для этого нужно медленно и аккуратно открывать шаровый кран на входе воды в радиатор. Если при полном открытии крана утечек по всем соединениям нет, то можно выпускать воздух, открывать кран на выходе и пользоваться обновленным радиатором.
Как добавить секции к радиатору отопления, 5 / 5 (2 голосов)
Расскажите о нас друзьям:
Схемы подключения
Наиболее отказоустойчивая схема соединения радиаторов отопления в частном доме с розливом и котлом — однотрубная ленинградка. Отопительные приборы подключаются параллельно розливу, который прокладывается по периметру помещения.
Несколько дешевле в монтаже, но заметно проблемнее в эксплуатации схема, использующая последовательное подключение батарей. Достаточно сказать, что их независимая регулировка в этом случае невозможна.
Вариант однотрубной схемы с последовательным подключением.
Наконец, двухтрубная система подразумевает подключение каждого радиатора в качестве перемычки между подающей и обратной ниткой. Она неудобна тем, что требует уже упоминавшейся балансировки — ограничения проходимости ближних к котлу отопительных приборов.
Какими могут быть схемы подсоединения радиаторов отопления к подводке?
- Односторонняя. подводки соединяются с верхней и нижней радиаторными пробками справа или слева. Она компактна, но делает нагрев прибора неравномерным: последние секции всегда будут холоднее первых.
- Снизу вниз. В этом случае батарея обязательно комплектуется воздушником. Достоинства решения — в том, что радиатор при таком подключении не требует промывки и всегда греет по всей длине.
- Диагональная. Нагрев секций еще более равномерен; однако нижний угол прибора с глухой пробкой будет постепенно заиливаться.
Варианты подключения к подводкам.
Расчет секций алюминиевых радиаторов на квадратный метр
Как правило, производителями заранее просчитаны нормы мощности батарей из алюминия. которые зависят от таких параметров, как высота потолков и площадь помещения. Так считается, что на то, чтобы нагреть 1 м2 комнаты с потолком до 3 м высоты потребует тепловая мощность в 100 Вт.
Эти цифры приблизительны, так как расчет алюминиевых радиаторов отопления по площади в данном случае не предусматривает возможных теплопотерь в помещении или более высокие или низкие потолки. Это общепринятые строительные нормы, которые указывают в техпаспорте своей продукции производители.
Немалую важность играет параметр тепловой мощности одного ребра радиатора. Для алюминиевого обогревателя она составляет 180-190 Вт.
Температура носителя так же должна учитываться
Ее можно узнать в управляющем тепловом хозяйстве, если отопление централизованное, либо измерить самостоятельно в автономной системе. Для алюминиевых батарей показатель равен 100-130 градусам. Разделив температуру на тепловую мощность радиатора, получается, что для обогрева 1 м2 потребуется 0.55 секций.
В том случае, если высота потолков «переросла» классические стандарты, то необходимо применять специальный коэффициент:
если потолок равен 3 м, то параметры умножаются на 1.05;
при высоте 3.5 м он составляет 1.1;
при показателе 4 м – это 1.15;
высота стены 4.5 м – коэффициент равен 1.2.
Можно воспользоваться таблицей, которую предоставляют производители к своей продукции.
Сколько нужно секций алюминиевого радиатора?
Расчет количества секций алюминиевого радиатора производится по форме, подходящей для обогревателей любого типа:
- S – площадь помещения, где требуется установка батареи;
- k – коэффициент корректировки показателя 100 Вт/м2 в зависимости от высоты потолка;
- P – мощность одного элемента радиатора.
При расчете количества секций алюминиевых радиаторов отопления получается, что в помещении площадью 20 м2 при высоте потолка 2.7 м для алюминиевого радиатора с мощностью одной секции 0.138 кВт потребуется 14 секций.
Q = 20 х 100 / 0.138 = 14.49
В данном примере коэффициент не применяется, так как высота потолка менее 3 м
Но даже такой секций алюминиевых радиаторов отопления не будут верными, так как не взяты во внимание возможные теплопотери помещения. Следует учитывать, что в зависимости от того, сколько в комнате окон, является ли она угловой и есть ли в ней балкон: все это указывает на количество источников теплопотерь
Делая расчет алюминиевых радиаторов по площади помещения, следует в формуле учитывать процент потери тепла в зависимости от того, где они будут установлены:
- если они закреплены под подоконником, то потери составят до 4%;
- установка в нише моментально увеличивает этот показатель до 7%;
- если алюминиевый радиатор для красоты прикрыть с одной стороны экраном, то потери составят до 7-8%;
- закрытый экраном полностью, он будет терять до 25%, что делает его в принципе малорентабельным.
Это далеко не все показатели, которые следует учесть при установке алюминиевых батарей.
Совместимость с системами отопления
Для типичного алюминиевого отопительного прибора производители рекомендуют рабочее давление в 10-20 атмосфер при температуре не выше 130 градусов. Каковы реальные параметры разных отопительных систем в штатном режиме?
Система отопления | Давление | Температура |
С централизованной подачей теплоносителя | 3-5 кгс/см2 | 40-95 °С |
Автономная | 1,0-2,5 кгс/см2 | 50-80 °С |
Элеваторный узел многоквартирного дома. Манометры показывают давление в мегапаскалях на подаче и обратке отопления. 1 МПа примерно равен 10 атмосферам.
Как легко заметить, рабочее давление батарей укладывается в эксплуатационные параметры отопительных систем с изрядным запасом.
Стало быть, их можно без ограничений использовать и в частных, и в многоквартирных домах? Не спешите с выводами, камрады.
В автономных контурах — можно. Их параметры полностью подконтрольны владельцу и при правильно спроектированной отопительной системе (то есть при достаточном объеме расширительного бака и рабочем предохранительном клапане) никогда не выйдут за пределы указанных мной значений.
Мембранный расширительный бак компенсирует расширение теплоносителя при нагреве и препятствует росту давления.
Группа безопасности отопительного котла. Манометр (слева) служит для визуального контроля давления в контуре. Предохранительный клапан (справа) сбрасывает теплоноситель в дренаж при опасном росте давления.
А вот в отопительных системах многоквартирных домов возможны нештатные ситуации, приводящие к скачкам давления.
Приведу пару примеров:
- Гидроудар. Он возникает, если быстро заполнить водой сброшенный на время ремонтных работ стояк или весь контур. Вода практически несжимаема, поэтому в момент, когда она полностью вытеснит воздух через воздушник или сбросник, давление на фронте потока может кратковременно вырасти до 25-30 атмосфер;
Последствия гидроудара. Алюминиевая секция лопнула вдоль оребрения.
- Ежегодные испытания теплотрасс на плотность. Они проводятся после окончания отопительного сезона и призваны выявить слабые места в изношенных трубопроводах: в теплотрассу нагнетается холодная вода с давлением 12 кгс/см2 и более.
На время испытаний входные задвижки элеваторного узла должны быть перекрыты, а сбросы открыты. А теперь представьте себе, что произойдет, если по любой причине (ошибка слесаря, выход из строя одной из задвижек) элеватор не будет отсечен от трассы. Результат предсказать нетрудно: рассчитанные на 10 атмосфер батареи лопнут.
Порыв теплотрассы при испытаниях на плотность. Алюминиевому радиатору при испытательном давлении явно не поздоровится.
Биметаллический радиатор: прочный стальной сердечник окружен оболочкой с оребрением из обладающего высокой теплопроводностью алюминия.
Кто должен менять батареи в квартире
При автономном теплоснабжении батареи должен менять собственник жилья Замена батарей отопления в квартире многоэтажного дома — это мероприятие, которое требует тщательной подготовки. В соответствии с действующим законодательством, одним из ее этапов является выяснение информации относительно прав собственности на отопительный контур. В большинстве случаев система, если не установлен частный автономный котел, является общественным имуществом, с которым производить какие-либо самостоятельные действия запрещено, за исключением стравливания воздуха.
Если в этом есть сомнения, следует написать заявление в управляющую компанию и ждать заключения экспертизы. Она проводится путем изучения строительно-технической документации и осмотра коммуникаций.
На основании проведенного обследования делаются выводы такой направленности:
- Способ обслуживания помещений в квартире и их отношение к общей сети.
- Наличие или отсутствие отдельного стояка, который предназначен для обогрева только одного объекта недвижимости.
Теплоотдача радиаторов отопления таблица — Климат в доме
Основными критериями выбора приборов для обогрева жилья является его теплоотдача.
Это коэффициент, определяющий количество выделенного тепла устройством.
Иными словами, чем выше теплоотдача, тем быстрее и качественнее будет осуществляться прогрев дома.
Сколько нужно тепла для отопления?
Для точного расчета необходимого количества тепла для помещения следует учитывать множество факторов: климатические особенности местности, кубатуру здания, возможные теплопотери жилья (количество окон и дверей, строительный материал, наличие утеплителя и др.). Данная система вычислений достаточно трудоемкая и применяется в редких случаях.
В основном, расчет тепла определяется на основании установленных ориентировочных коэффициентов: для помещения с потолками не выше 3 метров, на 10 м2 требуется 1 Квт тепловой энергии. Для северных регионов показатель увеличивается до 1,3 Квт.
К примеру, помещение, площадью 80 м2, для оптимального обогрева требует 8 КВт мощности. Для северных районов количество тепловой энергии возрастет до 10,4 КВт
Теплоотдача – ключевой показатель эффективности
Коэффициент теплоотдачи радиаторов – это показатель его мощности. Он определяет количество выделенного тепла за определенный промежуток времени. На мощность конвектора влияют: физические свойства прибора, его тип подключения, температура и скорость теплоносителя.
Мощность конвектора, указанная в его техпаспорте, обусловлена физическими свойствами материала, из которого изготовлен прибор, и зависит от его межосевого расстояния. Чтобы рассчитать необходимое количество секций радиатора для помещения, понадобится площадь жилья и коэффициент теплового потока прибора.
Вычисления производятся по формуле:
Количество секций = S/ 10 * коэффициент энергии (K) / величина теплового потока (Q)
Расчет: 50 / 10 * 1 / 0,18 = 27,7. То есть, для обогрева помещения понадобится 28 секций. Для монолитных приборов, за место Q, ставим коэффициент теплоотдачи радиатора и в результате получаем необходимое количество батарей.
Если конвекторы будут установлены рядом с источниками, влияющими на теплопотери (окна, двери), то коэффициент энергии берется из расчета — 1.3.
Для отопления используются радиаторы: стальные, алюминиевые, медные, чугунные, биметаллические (сталь + алюминий), и все они имеют разную величину теплового потока, обусловленную свойствами металла.
Сравнение показателей: анализ и таблица
Помимо материала, из которого изготовлен прибор, на коэффициент мощности влияет межосевое расстояние – высота между осями верхнего и нижнего выходов. Также существенное влияние на КПД оказывает величина теплопроводности.
Материал изготовления
Наибольшей теплоотдачей обладают медные и алюминиевые конвекторы. Самый низкий коэффициент мощности наблюдается у чугунных батарей, но он компенсируется их способностью сохранять тепло длительное время.
На эффективность КПД влияет правильный монтаж теплоприборов:
- Оптимальное расстояние между полом и батареей – 70-120 мм, между подоконником – не менее 80 мм.
- Обязательно предусматривается установка воздуховыпускника (крана Маевского).
- Горизонтальное положение теплоприбора.
Радиаторы с лучшей теплоотдачей:
Мифы о биметаллических и алюминиевых радиаторах. Сравниваем теплоотдачу
Алюминий и его сплавы отличаются прекрасной теплопроводностью, составляющей 220 Вт/м*К. Для радиаторного силумина этот показатель равен 150—180 Вт/м*К. По передаче тепла лучше них только медь (λ = 380 Вт/м*К), но из нее батареи не изготавливают. В биметаллических радиаторах между теплоносителем и алюминиевым корпусом появляется стальной посредник с гораздо меньшей теплопроводностью — 70 Вт/м*К.
Если предположить, что скорость движения воды и ее температура одинаковы в приборах из силумина и биметалла, то теплоотдача вторых будет меньше. Сталь не успеет отобрать у теплоносителя такое количество теплоты, как силумин. Это – в теории.
На практике показатели теплопередачи , декларируемые производителями, у силуминовых и биметаллических секций практически одинаковы. Чтобы в этом убедиться, достаточно взглянуть на таблицу, где показаны данные для изделий от двух известных производителей – Global (Италия) и Rifar (Россия):
Примечание. Значения теплоотдачи указаны для определенных условий: разница температур теплоносителя и воздуха в помещении должна составлять 70 °С (соответственно, 90 и 20 °С). Это значит, что в реальности батареи отдадут тепла примерно в 1.5 раза меньше.
Если сопоставить размеры секций представленных моделей, то станет заметно, что они способны передавать в помещение примерно одинаковый тепловой поток. Отсюда вывод: оба вида радиаторов греют одинаково эффективно и по этому критерию разницы между ними нет.
Теплый пол
Не так давно от полотенцесушителя или комнатного радиатора становился продолжением общей системы отопления в квартире, в разы увеличивая площадь обогревающей поверхности. Но вода в качестве теплоносителя именно в этой ситуации может создать немало проблем.
Как бы ни были надежны стальные трубы, они не вечны, а места соединений, особенно резьбовых, могут со временем дать течь. Только представьте, что это произошло внутри бетонной стяжки, которую так просто не снять. По этой причине теплый пол в водяном исполнении практически не применяется.
Если вы все-таки решили реализовать эту систему, вам придется подумать, как сделать ее максимально эффективной. Мощность должна рассчитываться с предельной точностью. Но если цифры показывают, что теплопередача получается недостаточной, нужно в первую очередь озаботиться повышением эффективности стальных труб.
Поскольку эта конструкция контактирует не с воздухом в помещении, а нагревает материалы пола, сыграть можно только на увеличении протяженности труб. Поэтому их и укладывают компактной, но длинной «змейкой». Благодаря большой площади собственной поверхности она передает много тепла.
Нюанс: при плотной укладке нескольких погонных метров трубы теплоотдача теплого пола в целом возрастет, а каждого отдельного сегмента, не критично, но уменьшится.
Причина в том, что слишком близко расположенные трубы частично налаживают теплообмен друг с другом. Вокруг каждой создается нагретая зона, что приводит к некоторому снижению теплового напора.
Факторы, снижающие мощность работы системы отопления
Ряд факторов оказывают негативное влияние на работу отопительных радиаторов, снижая их мощность:
- воздушные пробки — воздух необходимо спускать при каждом запуске системы после сезонного «отдыха»;
- внутреннее засорение припоем, ржавчиной, кальциевыми отложениями;
- монтаж внешний коробов, выполненных из материалов с низкой теплопроводностью;
- частое окрашивание без удаления старого слоя краски;
- внешние загрязнения — пыль, жир и др.
Однако, коммунальщики редко заморачиваются профилактическими мероприятиями. Самостоятельно выполнить промывку тоже нереально. Для проведения таких манипуляций необходимо слить носитель со всей системы (даже в летний период) и загнать в нее специальный раствор под давлением.
Другая причина снижение теплоотдачи отопительной системы — теплопотери. Еще на этапе строительства проводится теплотехнический расчет, подбирается оборудование. Стены утепляются
Если речь идет о домах, где провести дополнительное утепление уже невозможно, стоит обратить внимание на качество окон — именно они становятся основным источником теплопотери. Рекомендуется заменить их на более современные
Потери тепла в доме