Альтернативные источники энергии: обзор технологий

Альтернативный источник энергии Ветрогенерация

Это еще один вид альтернативной энергии, у которого на первый взгляд отличные экологические показатели — в первую очередь полное отсутствие углеводородов при выработке электроэнергии.

Но, во-первых, использование ветряных мельниц возможно не везде, а во-вторых, КПД такой станции оставляет желать лучшего: в среднем он составляет около 30%. По закону Беца максимальный коэффициент использования энергии ветра равен 0,593. Если учесть затраты на преобразование и транспортировку энергии, максимально возможный КПД получится в районе 35—45%.

Это обусловлено длинной цепочкой производства энергии: для питания какого-либо объекта нужна сеть 380/220 вольт переменного тока, а ветряная мельница сама по себе вырабатывает 24 вольт постоянного тока — то есть нужен инвертор, чтобы этот ток преобразовать.

А еще нужно сохранить энергию в моменты, когда она не потребляется, — для этого понадобится аккумуляторная батарея. В каждом из этих звеньев теряется энергия. Одна мельница высотой 10 метров и диаметром ротора 1,5 метра вырабатывает всего около 0,6—0,7 кВт·ч/сутки энергии, в зависимости от интенсивности ветра. Для примера: обычный бытовой холодильник потребляет около 0,3 кВт·ч.

Негативное влияние на окружающую среду тоже есть:

  1. Для ветропарка нужна большая площадь — это может повлечь за собой вырубку лесов, выравнивание ландшафта.
  2. От работы мельниц создаются вибрации на определенной частоте, от которых черви глубже уходят в землю. За счет этого птицам нечем питаться — нарушаются пищевые цепочки.
  3. Необходимо огромное количество батарей для сохранения энергии. Для производства батарей требуются редкоземельные металлы — а добыча этих металлов очень грязная и вредная для окружающей среды.
  4. Кладбище изношенных ветряных лопастей — это огромная проблема. Утилизировать лопасти ветрогенераторов нормально пока не научились.

Популярные источники возобновляемой энергии

Еще с древних времен люди использовали в повседневном обиходе механизмы и устройства, действие которых было направлено на превращение в механическую энергию сил природы.  Ярким примером тому являются водяные мельницы и ветряки. С появлением электричества наличие генератора позволило механическую энергию превращать в электрическую.

Водяная мельница — предшественник насоса автомата, не требующий присутствия человека для совершения работы. Колесо самопроизвольно вращается под напором воды и самостоятельно черпает воду

Сегодня значительное количество энергии вырабатывается именно ветряными комплексами и гидроэлектростанциями. Помимо ветра и воды людям доступны такие источники, как биотопливо, энергия земных недр, солнечный свет, энергия гейзеров и вулканов, сила приливов и отливов.

В быту для получения возобновляемой энергии широко используют следующие устройства:

  • Солнечные батареи.
  • Тепловые насосы.
  • Ветрогенераторы.

Высокая стоимость, как самих устройств, так и проведения монтажных работ, останавливает многих людей на пути к получению вроде бы бесплатной энергии.  Окупаемость может достигать 15-20 лет, но это не повод лишать себя экономических перспектив. Все эти устройства можно изготовить и установить самостоятельно.

При выборе источника альтернативной энергии нужно ориентироваться на ее доступность, тогда максимальная мощность будет достигнута при минимуме вложений

Альтернативная и традиционная энергетика

Единого определения альтернативных источников энергии нет. Обычно к ним относят источники не связанные со сжиганием не возобновляемого ископаемого топлива. Однако гидроэнергетика и даже ядерная энергетика может относиться разными авторами и к альтернативным, и к традиционным источникам энергии, хотя альтернативность традиционной гидроэнергетики вполне очевидна. Дальнейшие возможности развития гидроэнергетики ограничены. Поэтому далее в качестве альтернатив, доминирующей сегодня традиционной энергетике будут рассмотрены ветровая, солнечная и «не альтернативная» ядерная энергетика, хотя европейские страны, интенсивно развивающие безопасную ветровую и солнечную энергетику, сегодня пытаются избавиться в первую очередь от ядерной, а не традиционной энергетики.

В 2013 году в энергетику ВИЭ объем мировых инвестиций составил 250 млрд долларов, а 1100 млрд долларов инвестировано в добычу, транспортировку и переработку ископаемого топлива и строительство тепловых электростанций на ископаемом топливе (не уране).
В 2012 году МЭА отметило, что потребление угля продолжает расти быстрее всех возобновляемых источников энергии.

Гелиоактивные здания

В последнее время в мире применяется строительство зданий с использованием гелеоустановок. Проектирование и строительство зданий осуществляются по двум направлениям: использование теплофизических свойств самого здания для накопления и сохранения тепла (пассивные системы), и создание специальных технологических устройств в пределах здания, преобразующих энергию солнца в тепловую или электрическую (активные системы).

Существует несколько способов получения электричества и тепла из солнечного излучения:

  • Использование фотоэлементов для получения электрической энергии. Фотоэлемент – электронный прибор, который преобразует энергию фотонов в электрическую энергию.
  • Преобразование солнечной энергии в электричество с помощью тепловых машин:

– паровые машины (поршневые или турбинные), использующие водяной пар, углекислый газ, пропан-бутан, фреоны;

– двигатель Стирлинга и т.д.

Нагрев поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла. Пример: коллекторы, в которых нагревается вода.

Дома коттеджного типа способны себя обеспечить теплом и горячим водоснабжением до 100% и на 50% электроэнергией. В случае сбоя системы они могут быть подключены к резервной миникотельной.

Ресурсы возобновляемой энергии

Под понятием «альтернативные источники энергии» подразумевают привычные природные явления, неисчерпаемые ресурсы, вырабатывающиеся естественным образом. Такую энергию ещё называют регенеративной или «зелёной».

К невозобновляемым источникам энергии относят: нефть, природный газ и уголь. Их количество на земном шаре стремительно уменьшается, поэтому требуется замена.Да и экологическое состояние оставляет желать лучшего: выброс углекислого газа, парниковый эффект и глобальное потепление.Поскольку люди получает энергию, в основном за счёт сжигания ископаемого топлива и работы атомных электростанций, появляется нужда в более экологичных способах добычи энергии, которые приносят меньше вреда. Альтернативная энергетика нужна не только для промышленных целей, но и в простых домах для отопления, горячей воды, освещения, работы электроники.

Основные ресурсы:

  • Солнечный свет
  • Водные потоки
  • Ветер
  • Приливы
  • Биотопливо (топливо из растительного или животного сырья)
  • Геотермальная теплота (недра Земли)

Использование энергии ветра

Ветроэнергетическая установка (ВЭУ), преобразующая кинетическую энергию ветрового потока в электрическую, состоит из ветродвигателя, генератора электрического тока, автоматических устройств управления работой ветродвигателя и генератора, сооружений для их установки и обслуживания. В большинстве случаев ВЭУ используется как источник электроэнергии относительно небольшой мощности в местах, характеризующихся хорошим ветровым режимом (среднегодовая скорость ветра превышает 5 м/сек) и удаленных от сетей централизованного электроснабжения. ВЭУ могут быть объединены в крупные ветроэнергети-ческие станции (ВЭС).

Ветроэнергетический потенциал в России оценивается порядка 16 млрд. МВт*ч. Однако, несмотря на эти обнадеживающие показатели, установленная мощность ветроэнергетических станций (ВЭС), действующих на территории РФ, составляет порядка 16,5 МВт (2009 г.).

Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы в атмосферу порядка 1800 т СО2, 9 т SO2, 4 т оксидов азота. Кроме того, в отличие от традиционных тепловых электростанций, ветряные электростанции не используют воду, что позволяет существенно снизить нагрузку на водные ресурсы.

Подробнее о технологии по ссылкам: http://www.energosovet.ru/entech.php?idd=5, http://www.energosovet.ru/entech.php?idd=129

Что такое альтернативная энергетика?

Само название альтернативной энергетики говорит, что это энергетика, которая отличается от традиционной. В традиционной энергетике используются такие ресурсы, которые невозможно восполнить, и когда-нибудь они закончатся. Альтернативная энергетика – это комплекс мер получения, передачи и использования энергии возобновляемых природных ресурсов.

Россия отстает от многих стран мира по применению альтернативных источников. Основная причина – большие запасы ископаемого топлива. Пока доля возобновляемых источников в энергетике страны мала, но каждый год вводятся в эксплуатацию новые электростанции, работающие на альтернативной энергии:

  • солнечной;
  • ветровой;
  • приливной;
  • геотермальной и других.

Развитие альтернативной энергетики

Использование «зеленой» энергии считается новым методом, но попытки применения возобновляемых ресурсов в энергетике ведут историю с 18 века:

  1. В 1737-1753 французский математик Бернар Форест де Белидор написал трактат «Гидравлическая архитектура». В нем содержится 200 чертежей гидотехнических сооружений, описана идея создания «солнечного насоса».
  2. В 1846 г. Построена первая ветроустановка по проекту Поля ла Круа.
  3. 1861 г. – запатентовано изобретение солнечной электростанции.
  4. 1881 г. – построена первая ГЭС на Ниагарском водопаде.
  5. 1913 г. – под руководством итальянского инженера Пьеро Джинори Конти построена первая геотермальная ЭС.
  6. 1931 г. – первая промышленная ветровая станция в Крыму.
  7. 1966 г. – во Франции запустили первую электростанцию, работающей на энергии волн.

Нефтяной кризис 1973 года дал новый стимул развитию возобновляемой энергетики. Ряд аварий на электростанциях на рубеже веков повысил интерес инженеров к «зеленым» источникам.

Откуда можно получать энергию?

Альтернативными энергетическими источниками признаются технологии и устройства, чей принцип действия не основывается на сжигании полезных ископаемых и иных традиционных способах, но которые позволяют получить электрическую энергию или другой, необходимый вид энергии – механическую, тепловую.

Основная цель такой энергетики – независимость от углеводородного топлива, исключение риска истощения залежей полезных ископаемых, исключение вредных выбросов в атмосферу и снижение парникового эффекта.

Где спрятаны огромные энергетические ресурсы нашей планеты? Обращают на себя внимание неисчерпаемые природные возможности:

  1. Солнечная энергия. Она способна нагревать, освещать, служить катализатором химических реакций, вызывать фотоэффект. Возникает задача рационально преобразовывать солнечную энергию в необходимые виды и накапливать энергию для круглосуточного использования.
  2. Ветер. Он имеет большой энергетический потенциал, который способен вращать специальные конструкции, способные генерировать электроэнергию.
  3. Энергия Земли. Огромные запасы тепла хранят в себе недра нашей планеты. Геотермальные источники могут стать поставщиком необходимой тепловой или электрической энергии при правильном использовании.
  4. Энергия воды. ГЭС давно служат человечеству, но они требуют перекрывания русла рек плотинами, что вносит заметный вклад в изменение природы. Неисчерпаемые энергетические возможности обнаруживают приливно-отливные морские процессы, которые иногда приносят только беды человеку. Если эту энергию использовать для вращения турбин, то можно обеспечить себя электроэнергией.
  5. Биологическая энергия. В процессе гниения биологических масс (навоз, элементы растений, погибшие организмы) выделяется газ, основу которого составляет метан. Этот биогаз можно задействовать для выработки электричества и обогрева. Данная технология позволяет использовать отходы животноводства с большой пользой. На базе биомассы уже создается жидкое (биодизель, этанол) и твердое (биобрикеты и пеллеты) топливо.
  6. Природный температурный градиент. Перепад температур, возникающий в естественных условиях, с пользой используется в тепловых насосах.

Виды источников

Как можно использовать альтернативные источники? При правильном подходе можно получить такие виды энергии:

  • Электроэнергия. Альтернативная энергия дает возможность создания электрических аккумуляторов, строительства тепловых и гидроэлектростанций.
  • Тепловая энергия. Обогрев домов, теплиц, производственных сооружений можно осуществлять непосредственно от природных источников, что уже находит широкое применение.
  • Транспорт. Биотопливо способно приводить в движение двигатели транспортных средств. Если в настоящее время такой подход больше похож на эксперимент, то в будущем у него отмечаются хорошие перспективы.
  • Механическая энергия. С древних времен вода приводила в движение жернова мельниц. При современной технике альтернативные источники способны двигать конструкции самого разного назначения.

Биоэнергия

Биоэнергию производят из разных видов биологического сырья, которое получается после переработки биоотходов. Из твердых (щепа, пеллеты, древесина, солома), жидких (биоэтанол, биометанол, биодизель) и газообразных (биогаз, биоводород) видов биологического топлива путем термохимических (пиролиз, сжигание), физико-химических (биоконверсия), либо биохимических (анаэробное брожение биомассы) методов преобразования получают тепловую или электрическую энергию.

Преимущества и недостатки альтернативных источников энергии следует рассматривать в индивидуальном порядке, однако выделим несколько общих плюсов и минусов, характерных для всех источников.

Плюсы

  • Если все сделано правильно, геотермальная энергия не производит вредных побочных продуктов.
  • Как только построено геотермальное растение, оно, как правило, самодостаточно энергично.
  • Геотермальные электростанции, как правило, небольшие и мало влияют на природный ландшафт.

Энергетика ВИЭ

Очевидными достоинствами ВИЭ являются безопасность, экологичность и практическая неисчерпаемость потока энергии. Однако, ВИЭ имеют и существенные недостатки. Это нестабильность, локальность и сезонность

Нестабильность это основная проблема возобновляемых источников. Выработка энергии ветра и солнца сильно зависит от погоды, которая неуправляема и в долговременном плане непредсказуема. Поток солнечной энергии зависит от времени суток. Поэтому когда доля «альтернативной энергии» достигает существенной величины в общей выработке энергии, возникает проблема её накопления во время пиковой выработки и компенсации потерь во время безветренной или пасмурной погоды и ночью. Например, Дания, которая сегодня более 40 % электроэнергии генерирует ветрогенераторами решает проблему стабильности с помощью соседей. В ветреную погоду энергия накапливается с помощью подъёма воды на специальных норвежских и шведских гидроузлах в верхние водохранилища. В тихую погоду эти гидроузлы работают как ГЭС и возвращают энергию. Германия в ветреные и солнечные дни сбрасывает избыток энергии в Польшу и Чехию. Однако пиковые нагрузки уже создают проблемы для энергосетей этих стран. Для дальнейшего увеличения доли возобновляемой энергии необходима модернизация электросетей в Европе и развитие мощной системы энергонакопителей, в качестве которых сегодня выступают в основном обычные и специализированные гидроэлектростанции. Если выработка альтернативной энергии во всей Европе станет сопоставимой с выработкой энергии традиционной энергетикой, то нестабильность станет проблемой для всей энергосистемы. Технические пути решения этой проблемы пока не ясны, но её решение, безусловно, потребует новых затрат.

Локальность ветроэнергетики связана с тем, что мощность ветрогенератора пропорциональна кубу скорости ветра. При падении скорости в два раза мощность падает в восемь. Примерно также меняется и себестоимость энергии. Поэтому при современном развитии технологий ветрогенераторы рентабельно размещать только на побережье океанов и открытых морей, где постоянно дуют сильные ветры. Локальность солнечной энергетики связана с тем, что суммарный поток солнечной энергии сильно зависит от широты размещения станции и числа солнечных дней в данной местности.

Сезонность ВИЭ связана с тем, что поток солнечной энергии, а иногда и средняя скорость ветра зависят от времени года.

Энергия воды

Энергия воды остаётся незаменимой. Раньше она применялась на простых мельницах и кораблях, а сейчас огромные турбинные ГЭС поставляют электричество в целых регионах. Последние разработки предлагают человечеству познакомиться с фантастическим будущим, которое будет построено на новейших источниках. Какие альтернативы уже используются странами?

  • Приливные электростанции;
  • Волновые электростанции;
  • Микро и мини ГЭС;
  • Аэро ГЭС.

Аэро ГЭС – новейшая технология, которая пока ещё проходит проверку. Она основана на конденсации влаги из атмосферы. Действующие установки пока остаются призрачной мечтой, но есть определённые показатели, подтверждающие целесообразность вложения денежных средств в разработки.

Энергетика России

Выработка электроэнергии на российских АЭС в 1992—2014 годах, млрд кВт*ч

Добыча газа в России, 2005—2015 гг.

Большая часть территории России находится в достаточно высоких северных широтах, а средняя скорость ветра на ней около 5.5 м/c , что в разы увеличивает себестоимость ветровой энергии по сравнению с западным побережьем Европы и США . Среди относительно населённых регионов России рентабельное развитие современной ветроэнергетики возможно на Сахалине и в Мурманской области, где средняя скорость ветра достигает 8 м/с .Несколько ветрогенераторов имеется в Крыму. Развитие относительно рентабельной солнечной энергетики возможно в Крыму, где построено 6 и работает 5 фотоэлектростанций , Калмыкии и Астраханской области.

В силу этого масштабное развитие альтернативной энергетики в России пока малоперспективно. Стоимость атомной электроэнергии «на машинах станции» в начале этого века в среднем составляла 19,2 копейки за 1 кВт.ч. Средняя стоимость энергии на ТЭС всех видов 36,6 коп./кВт.ч. Даже самая дешёвая энергия газовых станций (23,6 коп./кВт.ч) дороже атомной. Кроме того, газ ценный экспортный ресурс и его добыча не растёт. Развитие газовой энергетики ограничено относительно небольшими разведанными мировыми запасами газа. Остальные виды топлива дают более дорогую энергию и сильно загрязняют атмосферу углекислым газом. По стоимости энергии и экологичности (при отсутствии катастрофических аварий) с АЭС могут соперничать только ГЭС, но развитие гидроэнергетики ограничено наличием рек с большим стоком и перепадом высот. В свете вышесказанного развитию атомной энергетики в России трудно найти альтернативу. 1 ноября 2016 года в России началась промышленная эксплуатация реактора на быстрых нейтронах БН-800 . Электрическая мощность — 880 МВт. Этот реактор обеспечивает:

  • Формирование экологически чистого «замкнутого» ядерного топливного цикла.
  • Более чем 50-кратное увеличение использования добываемого природного урана, и обеспечение атомной энергетики России топливом на длительную перспективу за счёт своего воспроизводства.
  • Утилизацию отработанного ядерного топлива с АЭС на тепловых нейтронах.
  • Утилизацию радиоактивных отходов путём вовлечения в полезный производственный цикл отвального урана и плутония.

Если учесть, что в России в отличие от Италии, запретившей ядерную энергетику, зимой довольно холодно, то, возможно, стране следует сосредоточиться на более быстром развитии и внедрении технологий эффективной и насколько возможно безопасной ядерной энергетики. Иначе до возникновения проблем с углеводородами можно просто не успеть, а надежд на то, что Африка вскоре начнёт снабжать нас «чистой» и дешёвой солнечной энергией немного.

Как распределяются виды энергии в каждой системе

Различные виды энергии  используются в жилых и коммерческих зданиях, на транспорте, в промышленности и электроэнергетике. Электроэнергетическая система является крупнейшим потребителем первичной и используется для выработки электроэнергии. Почти вся электроэнергия используется в зданиях и промышленности. Общее количество электроэнергетической системы, используемой в жилых и коммерческих зданиях, промышленности и транспорте огромное.

Почти все ядерное топливо используется в электроэнергетической системе для выработки электроэнергии. Её доля в России составляет 18% от первичной энергии. Во Франции – 75%, Венгрии – 52% , Украине – 56%. В среднем в мире порядка 10%.

Смесь первичных источников широко варьируется в различных системах спроса. Энергетическая политика, призванная повлиять на использование конкретного основного источника с целью повлиять на  окружающую среду, экономическую или энергетическую безопасность сосредоточивается на системах, которые являются основными пользователями этого типа энергии. Например, 71% нефти используется в транспортной системе, где она потребляет  92% от общего объема первичного энергопотребления.

Политика по сокращению потребления нефти чаще всего относится к транспортной системе. Эта политика обычно стремится увеличить эффективность автомобильного топлива или поощрять развитие  альтернативных видов топлива.

Около 91% угля и только 1% из нефти, используется для выработки электроэнергии, что выявляет стратегию, влияющую на выработку электроэнергии, и имеет гораздо большее значение на использование угля, чем использование нефти.

Некоторые первичные виды энергии, такие как ядерная и угольная, полностью или преимущественно используются для добычи электричества. Другие, такие как природный газ и возобновляемые источники, более равномерно распределены по системам. Аналогичным образом сейчас транспорт почти полностью зависит от одного вида топлива (нефтяного).

Однако электроэнергетика с внедрением новых технологий больше использует различные источники энергии для выработки электричества. Например, идут практические реализации для получения электричества из биомассы.

Изменяется ли потребление топлива с течением времени

Источники потребляемой энергии с течением времени меняются, но изменения происходят медленно. Например, уголь когда-то широко использовался в качестве топлива для отопления домов и коммерческих зданий, однако конкретное использование угля для этих целей сократилось за последние полвека.

Хотя доля возобновляемого топлива от общего потребления первичной энергии еще относительно невелика, его использование растет во всех отраслях. Кроме того, использование природного газа в электроэнергетике возросло в последние годы из-за низких цен на природный газ, в то время как использование угля в этой системе сократилось.

Достоинства и недостатки альтернативных источников энергии в мире

Альтернативные источники энергии — альтернативная энергия во всем мире

Альтернативные источники энергии — преимущества

  • Доступность. Особенно выгодно для стран, не обладающих нефтяными или газовыми месторождениями. Однако, это относится не ко всем видам. Например, если страна не имеет выхода к морю, получать волновую энергию она уже никак не сможет; так же и с геотермальной энергией, которую можно преобразовывать только в вулканических районах.
  • Экологичность – в процессе образовании тепла и электричества не происходит вредных выбросов в окружающую среду.
  • Экономия – полученная энергия имеет низкую себестоимость.

Альтернативные источники энергии — недостатки и проблемы

  • Требует больших затрат на этапе строительства и обслуживания, так как расходные материалы с оборудованием дорогие. Это приводит к повышению итоговой цены электроэнергии, поэтому она не всегда оправдана экономически. Единственное, что может помочь — это снижение себестоимости установок разработчиками.
  • Зависимость от факторов природы: сила ветра, уровень приливов, результат переработки солнечной энергии не подлежит контролю, плюс географическое расположение.
  • Низкий КПД наряду с маленькой мощностью установок (исключение ГЭС). Вырабатываемая мощность не всегда соответствует уровню потребления.
  • Влияние на климат. Возьмем к примеру, спрос на биотопливо. Он повлек за собой сокращение посевных площадей для продовольственных культур, а на характер рыбных хозяйств повлияли плотины для ГЭС.

Как вам статья?

Мне нравитсяНе нравится

Поделитесь в социальных сетях:ВКонтактеFacebookX
Напишите комментарий