Физики из России улучшили КПД солнечных батарей на 20%

От чего зависит КПД

На высокий процент эффективной выработки электроэнергии батареями влияет множество факторов. Основными из них являются:

  • Угол падения солнечного света на поверхность панелей.
  • Температурный коэффициент.
  • Погодные условия.
  • Наличие тени, грязи, снега.
  • Затемнение элементов.

Максимальная эффективность солнечных панелей достигается при попадании солнечного света на поверхность модулей под углом 90 градусов, то есть перпендикулярно. При этом, даже если батарея располагается с учетом всех требований угла наклона, поверхность фотоэлементов должна быть чистой и не заслоняться деревьями или другими постройками.

Сегодня можно приобрести солнечную батарею, которая уже оснащена функцией слежения и контроля расположения солнца. То есть панель сама подстраивается под угол падения солнечных лучей. Но подобные устройства достаточно дорого стоят и применяются на промышленных объектах.

При установке солнечных модулей следуйте рекомендациям специалистов. Во-первых, выбирайте южную сторону для размещения конструкций, чтобы избежать попадания тени на них, а во-вторых, соблюдайте угол наклона согласно времени года и региона проживания. Ведь чем больше солнечного света попадает на поверхность, тем выше КПД, а соответственно, и выработка электроэнергии. Учитывайте, что в зимнее время показатель эффективности может подать в половину, а то и больше. И не забывайте очищать модули от снега и грязи, так как это становится препятствием для попадания света.

Еще одним важным препятствием, снижающим общую эффективность выработки батареями электрического тока, выступает температурный коэффициент. В результате попадания солнечных лучей на поверхность модулей они нагреваются, температура может доходить до 80 градусов. Критические температурные значения напрямую отражаются на уровне КПД. Показатель снижается. Необходимо проводить мероприятия, направленные на уменьшение потери эффективности. Например, это можно сделать за счет свободного пространства между батареями, из-за чего воздушные массы смогут охлаждать модули, а также путем периодического протирания их.

Расчет количества солнечных батарей

Он делается очень просто: общую потребность в электроэнергии делят на мощность панели. Общую потребность можно определить двумя способами:

  1. Составить список всех электрических устройств, определить примерную продолжительность работы в течение месяца, рассчитать, сколько электроэнергии каждый из них потребляет в месяц (мощность умножается на число часов), и суммировать все полученные цифры.
  2. Поднять квитанции по оплате за электроэнергию и найти самое большое употребленное за один месяц количество кВт*ч. На всякий случай полученную цифру можно умножить на 1,5.

Предположим, что за месяц 3-4 жителя дома используют 300 кВт*ч. Чтобы полностью обеспечить себя электрической энергией, нужно иметь 300*12/284,16 = 12,66 панелей SolarWorld 2020. Конечную цифру округляют в большую сторону. Поэтому покупать надо 13 панелей.

Для июня хватит 300/44,75 = 6,7 батарей, а в декабре нужно использовать 300/7,57 = 39 панелей.

Плюсы

  1. За счет того, что в панелях нет подвижных узлов и элементов, повышается долговечность. Производители гарантируют срок службы в 25 лет.
  2. Если соблюдать все регламентные работы и правила эксплуатации работа таких систем увеличивается до 50 лет. Обслуживание довольно несложное — своевременно очищать фотоэлементы от пыли, снега и других естественных загрязнений.
  3. Именно долговечность системы — определяющий фактор для покупки и монтажа панелей. После того как все затраты себя окупят, вырабатываемое электричество получится бесплатным.

Самое главное препятствие для широкого применения таких систем — их высокая стоимость. При низком КПД бытовых солнечных панелей, есть серьезные сомнения в экономической необходимости именно в таком способе добычи электроэнергии.

Но опять же, надо разумно оценивать возможности данных систем и, исходя из этого, рассчитывать ожидаемую отдачу. Полностью заменить традиционную электроэнергию не выйдет, но получить экономию, используя и солнечные системы, вполне реально.

Кроме того, сложно не заметить такие выгоды как:

  • Получение электричества в самых удаленных от цивилизации районах;
  • Автономность;
  • Бесшумность.

Действующее законодательство

В России в конце 2019 года вышел закон, который ввел понятие «объект микрогенерации». Из определения следует, что это объект, присоединенный к сетям напряжением ниже 1000 вольт, имеющий возможность выдавать электроэнергию в общую сеть в объеме, не превышающем величину технологического присоединения. И максимум 15 кВт. А также использующий для выдачи электроэнергии в сеть собственную электросетевую инфраструктуру, а не общую.

Строго говоря, солнечные панели, установленные на крыше среднестатистического частного дома, могут быть объектом микрогенерации.

Также в марте 2020 года в развитие этого закона вышло постановление правительства РФ, уточняющее некоторые вопросы.

Что законодательство нам дает:

  1. Появляется возможность продавать излишки выработанной электроэнергии в общую сеть по договору купли-продажи с энергосбытовой организацией.
  2. Появляется возможность сальдировать в рамках одного месяца объемы потребления из сети и объемы выдачи в сеть.

Что касается продажи электроэнергии сбытовой организации: излишки можно продать по цене, не превышающей средневзвешенную цену электрической энергии на оптовом рынке — это порядка 0,8—1,3 Р за киловатт-час без НДС. Это ниже рассчитанной нами средней стоимости выработки электроэнергии солнечными станциями, то есть продажу электроэнергии в сеть вряд ли можно назвать выгодной.

А вот сальдирование предоставляет возможность использовать общую сеть как некий аккумулятор. Когда нам не нужна выработанная электроэнергия, она отдается в сеть, а когда нужна — забирается из сети в том же объеме бесплатно.

Это очень важный момент, так как все расчеты экономической эффективности солнечных панелей производятся исходя из условия, что каждый выработанный киловатт-час на протяжении всего жизненного цикла станции был потреблен и ни одного не ушло «в землю». Без сальдирования в условиях частного дома это было бы невозможно: нам приходится покидать дом, чтобы сходить в магазин, в гости, в кафе, съездить в отпуск, а солнце светит и светит. Сальдирование позволяет накопить весь объем выработанной солнечными панелями электроэнергии и использовать его в удобное для вас время в рамках одного месяца.

Оба механизма — купля-продажа и сальдирование — работают вместе. Итоги формируются по итогам расчетного месяца. Если ваше совокупное месячное потребление — 1000 кВт·ч, а станция выработала 800 кВт·ч, то разницу, 200 кВт·ч, вы приобретете по тарифу из сети. Если потребление было 800 кВт·ч, а станция выработала 1000 кВт·ч, то разницу у вас купит энергосбытовая компания по ценам оптового рынка.

Если у вас установлен двухтарифный или многотарифный счетчик, то объемы выработки и потребления определяются и сальдируются в рамках соответствующих зон суток — день/ночь, пик/полупик/ночь. То есть в таком случае дневную выработку станции нельзя сальдировать с ночным потреблением из сети — только с дневным.

Вот что необходимо сделать, чтобы все это заработало:

  1. Выполнить технологическое присоединение солнечной станции к объектам сетевой организации. Можно сделать это вместе с присоединением дома к сети или отдельно, если дом уже присоединен. Как подавать заявку на технологическое присоединение, мы уже писали.
  2. Заключить договор купли-продажи электрической энергии с энергосбытовой организацией — с той же, что вас обслуживает. Сделать это можно после или во время процедуры технологического присоединения, обратившись любым удобным способом.

Экономическая целесообразность использования солнечных систем

В солнечных системах отсутствуют какие-либо подвижные узлы и детали, что в значительной степени повышает их долговечность. Минимальный срок службы, заявленный производителями, составляет 25 лет. При условии своевременного обслуживания и соблюдения правил эксплуатации, этот срок может быть увеличен до 50 лет.

Данные устройства не подвержены серьезным поломкам и неисправностям. Все обслуживание заключается в периодической очистке фотоэлементов от загрязнений, налипшего снега и т.д. Своевременный уход существенно увеличивает коэффициент полезного действия и эффективность всей системы. Во многих случаях решение о покупке и установке батарей принимается именно по причине их долговечности. После того как устройство окупит себя, получаемое электричество будет фактически бесплатным.

Полная окупаемость панелей наступает задолго до окончания срока их службы. Единственным серьезным препятствием в использовании этих устройств становится высокая стоимость. Учитывая низкий КПД, многие люди начинают сомневаться в экономической целесообразности такого способа получения электроэнергии. В связи с этим, принимая решение, нужно учитывать все факторы, характерные для данного региона.

Окупаемость и эффективность солнечных батарей зависит от следующих факторов и условий:

  • Тип солнечных панелей и оборудования, величина их КПД, начальная цена фотоэлементов.
  • Региональные климатические условия. С увеличением интенсивности солнечного излучения, срок окупаемости заметно снижается за счет большего количества произведенной электроэнергии.
  • Стоимость оборудования и монтажных работ. Региональная цена электроэнергии.

Специалисты в данной области постоянно работают над повышением эффективности и КПД солнечных панелей. Постепенно снижается и себестоимость фотоэлементов. В перспективе это значительно снизит срок окупаемости и сделает гелиосистемы доступными для широких слоев населения.

Разработки, направленные на увеличение КПД солнечных батарей

В последние годы учёные по всему миру заявляют о разработке технологий, увеличивающих КПД солнечных модулей. Не все из них являются применимыми к реальным условиям эксплуатации, но некоторые из них заслуживают внимания. Так, в прошлом году специалисты Sharp разработали фотоэлектрические элементы с эффективностью 43,5 процента. Такое увеличение было получено благодаря установке линзы, которая фокусирует получаемую энергию прямо в элементе.

Устройство фотоэлементов Sharp

Физики из Германии 3 года назад разработали фотоэлемент, площадь которого всего несколько квадратных миллиметров. Он состоит из четырёх слоёв полупроводников. Полученных ими КПД составил 44,7 процента. Здесь эффективность была увеличена за счёт размещения в фокус вогнутого зеркала.

Другие британские специалисты разработали технологию, которая увеличивает эффективность фотоэлементов на 22 процента. На гладкой поверхности гибких панелей они нанесли алюминиевые шипы наноразмера. Алюминий рассеивает солнечный свет, поэтому был выбран он. В результате увеличивается количество энергии солнца, которое поглощается фотоэлементом. За счёт этого удалось добиться увеличения эффективности.

Оборудование для частной солнечной станции

Бытовые солнечные станции бывают сетевые, автономные и гибридные. Как следует из названия, сетевые используются в тех случаях, когда объект присоединен к внешней электрической сети и работает одновременно с ней. Автономные и гибридные могут работать без подключения к внешней сети.

Сетевые дешевле всех и позволяют уменьшить счета за электроэнергию, снижая объем потребления из внешней сети. Автономные и гибридные дороже, но позволяют накапливать электроэнергию в аккумуляторах, чтобы использовать ее в темное время суток или когда подача электроэнергии прерывается. Минус первых в том, что они не могут стать резервным источником энергии: при аварии во внешней сети не получится использовать энергию панелей, так как они автоматически отключатся. Минус вторых и третьих — в дороговизне.

Все солнечные станции состоят из солнечных панелей, коннекторов, то есть соединителей, проводов и инверторов, которые преобразуют постоянный ток от солнечных панелей в переменный и позволяют управлять всеми потоками электроэнергии. Аккумуляторы используются только в автономных и гибридных станциях.

Есть множество производителей оборудования, в том числе российских. Станцию можно скомпоновать из оборудования от разных производителей.

Для нашего анализа возьмем уже скомпонованные станции разных типов и мощности от разных поставщиков и посчитаем их среднюю розничную стоимость. Рассчитаем среднюю стоимость производства электроэнергии на протяжении всего жизненного цикла и выберем наиболее подходящий вариант, чтобы на его основе оценить целесообразность установки солнечных станций в разных субъектах РФ.

Для расчета возьмем средний срок службы панелей — 25 лет. Среднегодовой объем выработки электроэнергии посчитаем по инсоляции Челябинской области: там средний для РФ показатель, 1101 кВт·ч в год на 1 кВт мощности. Также учтем стоимость денег — возьмем среднюю ставку между банковским вкладом и кредитом, 8%, на срок службы панелей. Полную стоимость оборудования рассчитаем с помощью кредитного калькулятора.

Чем выше мощность станции, тем дешевле энергия. Есть станции и большей мощности, чем 15 кВт, но мы ограничились средним объемом присоединенной мощности домохозяйств.

Мощность станции необходимо подбирать так, чтобы выработка электроэнергии не превышала средний объем вашего потребления. Даже если дом имеет присоединенную мощность 15 кВт, это совершенно не значит, что вам нужны панели такой мощности. 15 кВт в этом случае — ваш максимум, при превышении которого сработает автоматика и электричество отключится. А средняя потребляемая мощность может составлять только 1—5 кВт — на это значение и нужно ориентироваться, чтобы использование солнечной станции было экономически целесообразным.

В статье мы рассматриваем солнечные станции с точки зрения экономии, а не как резервный или автономный источник энергии. Поэтому мы не будем использовать автономные и гибридные станции: они сильно дороже. И у аккумуляторов гораздо меньший срок службы, чем у солнечных панелей, — а это негативно влияет на сроки окупаемости.

Для анализа мы возьмем сетевую солнечную станцию без аккумуляторов средней мощностью 5 кВт. Держим в голове, что выработка всех станций мощностью ниже 5 кВт будет дороже, а выше 5 кВт — дешевле.

Разработки, направленные на увеличение КПД солнечных батарей

В последние годы учёные по всему миру заявляют о разработке технологий, увеличивающих КПД солнечных модулей. Не все из них являются применимыми к реальным условиям эксплуатации, но некоторые из них заслуживают внимания. Так, в прошлом году специалисты Sharp разработали фотоэлектрические элементы с эффективностью 43,5 процента. Такое увеличение было получено благодаря установке линзы, которая фокусирует получаемую энергию прямо в элементе.

Устройство фотоэлементов Sharp

Физики из Германии 3 года назад разработали фотоэлемент, площадь которого всего несколько квадратных миллиметров. Он состоит из четырёх слоёв полупроводников. Полученных ими КПД составил 44,7 процента. Здесь эффективность была увеличена за счёт размещения в фокус вогнутого зеркала.
 

Факторы, влияющие на эффективность фотоэлементов

Особенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры.

Частичное затемнение панели вызывает падение выходного напряжения за счёт потерь в неосвещённом элементе, который начинает выступать в роли паразитной нагрузки. От данного недостатка можно избавиться путём установки байпаса на каждый фотоэлемент панели. В облачную погоду при отсутствии прямых солнечных лучей крайне неэффективными становятся панели, в которых используются линзы для концентрирования излучения, так как исчезает эффект линзы.

Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.

Расчет производительности

Применение солнечной энергии и экономическую рациональность таких концепций обусловливает эффективность всех видов систем солнечных батарей. Прежде всего учитываются затраты, обращённые на преобразование энергии солнца в электрическую.

Насколько окупаемы и эффективны такие системы, определяют и такие факторы как:

  • Тип гелиопанелей и сопутствующего оборудования;
  • КПД фотоэлементов и их стоимость;
  • Климатические условия. В разных регионах — разная солнечная активность. Она же влияет и на срок окупаемости.

Как подобрать нужную производительность

Перед покупкой панелей необходимо знать, какую необходимую эффективность сможет выдавать солнечная батарея.

Если ваш домашний уровень потребления составляет, к примеру, 100 кВт/месяц (по электросчетчику), то целесообразно чтобы гелиоэлементы вырабатывали столько же.

С этим определились. Пойдем дальше.

Понятно, что гелиостанция работает только в дневное время суток. Мало того — паспортная мощность будет достигнута при наличии ясного неба. Кроме этого, пика мощности можно добиться при условии падения лучей солнца на поверхность под прямым углом.

При изменении положения солнца изменяется и угол панели. Соответственно, при больших углах будет наблюдаться заметное снижение мощности. Это только при условии ясного дня. В пасмурную погоду можно гарантировать падение мощности в 15–20 раз. Даже небольшое облачко или дымка вызывает падение мощности в 2–3 раза

Это тоже надо принимать во внимание

Теперь — как рассчитать время работы панелей?

Рабочий период, при котором батареи смогут эффективно работать практически на всю мощность, составляет примерно 7 часов. С 9–00 до 4–00 вечера. В летнее время световой день больше, но и выработка электричества в утреннее и вечернее время совсем мала — в пределах 20–30 %. Остальная часть, это 70 %, будет вырабатываться, опять-же, в дневное время, с 9 до 16 часов.

Итак, получается, что если панели имеют паспортную мощность 1 кВт, то в самый летний, самый солнечный день выработают 7 кВт/час электроэнергии. При том условии, что проработают с 9 до 16 часов дня. То есть в месяц это составит 210 кВт/час электроэнергии!

Это комплект панелей. А одна панелька мощностью всего-навсего в 100 ватт? За день она даст 700 ватт/час. В месяц 21 кВт.

Полимерные солнечные панели

В полимерных солнечных модулях фотоэффект обеспечивает слой «полимерного полупроводника» — больших молекул органических соединений. В настоящее время технология таких изделий близка к развертыванию крупномасштабного производства (некоторые европейские компании уже наладили коммерческий выпуск).

Полимерные солнечные панели

По оценкам эффективность преобразования таких устройств лежит в пределах 8-11%. За счет рекордно дешевого производства, использования гибких полимерных материалов, отсутствия проблем с утилизацией, в ближайшей перспективе полимерные гелиомодули смогут составить серьезную конкуренцию уже выпускающимся изделиям.

Производителями также ведутся активные разработки солнечных панелей на основе:

  • арсенида галлия, селенидов меди-индия-галлия (CGIS);
  • гибридных технологий, в которых несколько полупроводниковых элементов на разной основе работают в разных частях солнечного спектра;
  • фотосенсибилизированных ячеек, с колбами Гретцеля в качестве рабочего элемента;
  • наноантенн, в которых солнечный свет как электромагнитное излучение индуцирует ЭДС и др.

Мнение эксперта

Гребнев Вадим Савельевич

Монтажник отопительных систем

Многие из них демонстрируют КПД преобразования выше современных серийных панелей (например, полупроводники вплотную подошли к 50%-му рубежу, а эффективность наноантенн оценивается выше 80%), но пока эти варианты находятся на уровне лабораторных образцов и не могут заинтересовать реального пользователя.

Определение потерь электроэнергии в домашней системе

Величину этих потерь учитывает Кпот. Эти потери могут быть в:

  1. Проводах. Величина составляет 1%.
  2. Инверторе. Составляют от 3 до 7%.
  3. Шунтирующих диодах (0,5%).
  4. Самой батарее при очень малом солнечном излучении (1-3%).

Также потери электроэнергии могут возникать из-за сильного нагрева модуля (составляют 4-8%) и из-за наличия грязи на солнечных панелях или их потемнений (1-3%).

Автономная электрическая система для дома считается оптимальной, если общие потери не превышают 15%. Тогда срок окупаемости сокращается, а также аккумуляторы накапливают больше тока. Кпот составляет 0,85. Однако плохое качество оборудования или неграмотный выбор комплектующих может привести к 30-% потерям. Кпот уже составит 0,7.

Часто спрашивают

Солнечные батареи во время эксплуатации деградируют. На какой промежуток времени они рассчитаны?

Батареи класса качества А (GradeA), как правило, получают гарантию на 15-25 лет. За это время снижение показателей от номинальных не превышает 20%.

Как можно добиться стабильной отдачи от монокристаллических панелей в Средней полосе?

Инсоляция в этих регионах не способствует эффективной работе монокристаллических батарей. Несколько улучшить положение можно за счет поворотных устройств слежения за светилом, но их реализация существенно удорожает установку в целом.

Обязательно ли чистить/мыть панели?

Не обязательно, большинство производителей говорят, что для нормальной работы достаточно природных осадков, смывающих пыль. Однако несколько раз в сезон обдать водой из шланга будет не лишним. Конечно же, обязательно убирать снег зимой после снегопадов.

Возможно ли использовать в российских условиях солнечные батареи как единственный источник энергии, или следует дублировать его сетью?

При правильном расчете количества панелей и дополнительного оборудования (аккумуляторов, инвертора) солнечная электростанция вполне справится с электроснабжением дома без дублирующих источников.

На рынке сегодня множество предложений разных компаний. Чьи солнечные батареи покупать?

Большинство мелких производителей используют модули компаний, входящих в ТОП 10. Репутацию же производителя легко проверить на сайте Калифорнийской (https://gosolarcalifornia.org/equipment/pv_modules.php) или Европейской TUV (https://www.tuev-sued.de/industry_and_consumer_products/certificates) лабораторий.

Лучшие солнечные панели с АлиЭкспресс

DOKIO FFSP-320M (ru.aliexpress.com/item/Dokio-300-18-Hiqh/32878736954.html)

Рейтинг: 4.9

Гибкая складная панель DOKIO FFSP-320M предназначена для обеспечения электроэнергией приборов вдали от цивилизации. Ее мощность достигает 300 Вт, а максимальный показатель напряжения составляет 18 В. Модуль состоит из четырех частей, в развернутом положении он имеет длину 2000 мм при ширине 500 мм. Учитывая небольшой вес (7,1 кг), проблем с транспортировкой панели не будет. Качество китайской разработки подтверждено Европейским сертификатом. Эксперты отмечают монокристаллические фотоэлементы, надежно соединенные друг с другом, а также алюминиевую рамку, придающие конструкции прочность. Модель становится победителем нашего рейтинга.

Пока реальных покупателей солнечной панели не так уж много. Нареканий к качеству продукта нет, только не всем сразу понятны указанные в описании размеры.

  • качественное изготовление;
  • монокристаллические фотоэлементы;
  • компактные размеры;
  • небольшой вес.

высокая цена.

ECO-WORTHY L02P100-N-2

Рейтинг: 4.8

Солнечный модуль ECO-WORTHY L02P100-N-2 представляет собой двухсоставную конструкцию мощностью 200 Вт. Габаритные размеры одной панели составляют 975х665 мм. За превращение солнечного света в электричество отвечают поликристаллические фотоэлементы. Они могут работать в широком диапазоне температур (-40…+80°С). Эксперты отмечают эффективность модели при низкой освещенности, надежную конструкцию с алюминиевым обрамлением. Производитель комплектует свое изделие удлинителем и дополнительной парой разъемов MC4 для подключения. Панель занимает второе место в нашем рейтинге, уступая победителю в производительности.

Реальных покупателей солнечного модуля на АлиЭкспресс пока мало, но товар может похвастаться средним рейтингом в 5 звезд.

  • компактность;
  • широкий рабочий диапазон температур;
  • надежность;
  • эффективность при низкой освещенности.

высокая цена за поликристаллы.

BOGUANG 12001

Рейтинг: 4.7

Для зарядки 12-вольтных аккумуляторов подойдет солнечный модуль BOGUANG 12001. Эксперты отметили такие достоинства источника энергии, как гибкость, тонкость (3 мм), качественное соединение монокристаллических фотоэлементов. Даже в пасмурную погоду солнечная панель генерирует энергию с напряжением 15 В. Модуль состоит из двух частей, каждая из них обладает мощностью 100 Вт. Все соединения выполнены во влагозащитном исполнении, яркий светодиод сигнализирует о степени зарядки. Модель попадает в призовую тройку нашего рейтинга.

Более 200 человек приобрели солнечные панели BOGUANG 12001 на сайте АлиЭкспресс. Большинство отзывов носят положительный характер, заказ приходит быстро, редко бывают повреждения в процессе транспортировки. Только реальная мощность каждой панели меньше заявленной (75 Вт).

  • доступная цена;
  • гибкость;
  • малая толщина;
  • быстрая доставка.

реальная мощность ниже заявленной.

EPSOLAR BPS 32-100

Рейтинг: 4.6

Модель останавливается в шаге от призовой тройки, т. к. покупатели жалуются на повреждения панелей при транспортировке.

  • передовые технологии изготовления;
  • точные размеры;
  • качественная сборка;
  • доступная цена.

есть случаи повреждения при транспортировке.

DOKIO FFSP-80W

Рейтинг: 4.5

Доступной и компактной солнечной панелью является модель DOKIO FFSP-80W. Она складывается пополам, образуя сумку с ручками (подобно ноутбуку), что делает транспортировку удобной и безопасной. Модуль имеет компактные размеры (550х500х5 мм), небольшой вес (3,2 кг). Он создан на базе монокристаллов, закрытых закаленным стеклом с алюминиевым обрамлением. Максимальная мощность солнечной батареи ограничена 80 Вт, в комплекте идет контроллер на 12 и 24 В. Прибор может вырабатывать энергию при температуре окружающей среды -20…+40°С. Эксперты включили панель в наш рейтинг за мобильность и удобство использования.

Пользователи хвалят магазин за оперативную доставку, надежную упаковку, четкую обратную связь. Из недостатков отмечается небольшая мощность модуля.

Материал для панелей

Все современные системы преобразования солнечной энергии теоретически могут выдавать до 25 %. Эти показатели достигнуты при наиболее благоприятных условиях работы. В реальной жизни этот показатель еще меньше. Практика показывает, что для многих изделий считается хорошим коэффициент полезного действия до 15 %.

Поэтому для промышленного получения электричества, используются значительные площади элементов солнечных батарей.

Немаловажным фактором является сам материал, из которого изготавливаются панели.

В массовом производстве для создания панелей используется кремний. Но проблема как раз в том и состоит, что он работает от солнечного излучения, но воспринимает только инфракрасный спектр излучения. Ультрафиолетовая энергия ими не фиксируется и пропадет напрасно.

Мало того. На КПД солнечной батареи оказывает большое влияние и сам кремний. Вернее тот тип, который применяется в фотоэлементах.

Известно, все панели различаются на три вида, по типу строения кремния:

Солнечная погода — существенный фактор, влияющий на производительность. Те же тонкопленочные виды могут стабильно работать и в пасмурную погоду. Но при этом производительность настолько мала, что нужного эффекта трудно достигнуть. Необходим высокий уровень КПД, как у монокристаллов, но с облачностью этот показатель стремительно снижается.

Есть экспериментальная формула, которая наглядно показывает зависимость кпд солнечных батарей от угла, под которым солнечные лучи попадают на поверхность фотоэлементов.

Как устроена солнечная батарея

Все современные солнечные батареи работают благодаря открытию, сделанным физиком Александром Беккерелем в 1839 году — самого принципа работы полупроводников.

Если нагревать кремниевые фотоэлементы на верхней пластине, то атомы кремниевого полупроводника высвобождаются. Их стремятся захватить атомы нижней пластины. В полном соответствии с законами физики, электроны нижней пластины должны вернуться в первоначальное состояние. Этим электронам открывается один путь — по проводам. Сохранённая энергия передается аккумуляторам и возвращается вновь в верхнюю кремниевую пластину.

Почему мощность солнечной батареи 210 кВт лучше

Отличным вариантом станет солнечная батарея мощностью в 210 кВт. Но и здесь все не так просто.

Первое, что нужно учесть, это то, что солнце не будет светить весь месяц, и именно по этой причине необходимо свериться с архивом погодных условий в регионе, чтобы узнать приблизительное количество пасмурных дней. Как итог, вы увидите, что примерно 7 дней в общем количестве будет особо пасмурных и в этот период солнечные батареи не смогут давать нужное количество энергии.

Кроме этого нужно осознавать, что осеню и весной, день сокращается, а облачные дни увеличиваются, поэтому если вам нужна солнечная энергия, начиная с марта и заканчивая октябрем, то лучше увеличить массив батарей до 50%. Это зависит от региона проживания

Самым плачевным временем года для выработки солнечной энергии станет зима. Это, то время года, когда солнце может не появляться неделями, и в данной ситуации ни один массив не сможет помочь. В такой период лучше пользоваться бензогенераторами или ветрогенераторами. Кстати, последний, может стать основным поставщиком энергии в это время года. Конечно, если в вашей местности есть хорошие зимние ветра, и вы установили достаточно мощный генератор.

Развитие отечественной космической фотоэнергетики

Об энергоснабжении космических аппаратов конструкторы задумывались еще на стадии проектирования самых первых ракет-носителей. Ведь в космосе батареи не заменить, значит, срок активной службы космического аппарата обусловлен только емкостью бортовых батарей. Первый и второй искусственные спутники земли были оснащены только бортовыми батареями, которые истощились через несколько недель работы. Начиная с третьего спутника, все последующие космические аппараты были оборудованы солнечными батареями.

Главным разработчиком и изготовителем космических солнечных электростанций было научно-производственное предприятие «Квант». Солнечные панели «Кванта» установлены практически на всех отечественных космических аппаратах. Вначале это были кремниевые солнечные батареи. Их мощность была ограничена как заданными размерами, так и весом. Но затем учеными «Кванта» были разработаны и изготовлены первые в мире солнечные батареи на основе совершенно нового полупроводника – арсенида галлия (GaAs).

Кроме того, были запущены в производство абсолютно новые гелиевые панели, которые не имели аналогов в мире. Этой новинкой стали высокоэффективные гелиевые панели на подложке, имеющей сетчатую или струнную структуру.

Гелиевые панели с сетчатой и струнной подложкой

Специально для установки на космических аппаратах с низкими орбитами были спроектированы и изготовлены кремниевые гелиевые панели с двусторонней чувствительностью. Например, для российского сегмента международной космической станции (космического аппарата «Звезда») были изготовлены панели на кремниевой основе с двусторонней чувствительностью, причем площадь одной панели составляла 72 м².

Солнечная батарея космического аппарата «Звезда»

Были также разработаны на базе аморфного кремния и запущены в производство гибкие солнечные батареи, имеющие прекрасные удельные весовые характеристики: при весе всего 400 г/м² эти батареи вырабатывали электроэнергию с показателем 220 Вт/кг.

Гибкая гелиевая батарея на базе аморфного кремния

Чтобы повысить эффективность солнечных элементов, в большом объеме проводились наземные исследования и испытания, которые выявляли отрицательные воздействия Большого Космоса на гелиевые панели. Это позволило перейти к изготовлению солнечных батарей для космических аппаратов различных типов со сроком активной работы до 15 лет.

Почему мощность солнечной батареи 210 кВт лучше

Отличным вариантом станет солнечная батарея мощностью в 210 кВт. Но и здесь все не так просто.

Первое, что нужно учесть, это то, что солнце не будет светить весь месяц, и именно по этой причине необходимо свериться с архивом погодных условий в регионе, чтобы узнать приблизительное количество пасмурных дней. Как итог, вы увидите, что примерно 7 дней в общем количестве будет особо пасмурных и в этот период солнечные батареи не смогут давать нужное количество энергии.

Кроме этого нужно осознавать, что осеню и весной, день сокращается, а облачные дни увеличиваются, поэтому если вам нужна солнечная энергия, начиная с марта и заканчивая октябрем, то лучше увеличить массив батарей до 50%. Это зависит от региона проживания

Самым плачевным временем года для выработки солнечной энергии станет зима. Это, то время года, когда солнце может не появляться неделями, и в данной ситуации ни один массив не сможет помочь. В такой период лучше пользоваться бензогенераторами или ветрогенераторами. Кстати, последний, может стать основным поставщиком энергии в это время года. Конечно, если в вашей местности есть хорошие зимние ветра, и вы установили достаточно мощный генератор.

Срок службы и окупаемость солнечных панелей

В гелиосистемах нет никаких подвижных механических частей, что делает их долговечными и надёжными. Срок эксплуатации подобных батарей 25 лет и дольше. Если их правильно эксплуатировать и обслуживать, то они могут прослужить и 50 лет. Кроме этого, в них не бывает каких-то серьёзных поломок и от владельца требуется лишь периодически чистить фотоэлементы от грязи, снега и т. п. Это требуется для увеличения КПД и эффективности гелиосистемы. Длительный срок службы зачастую становится определяющим при решении покупать или нет солнечные батареи. Ведь после прохождения срока окупаемости, электроэнергия от них будет бесплатной.

Установка солнечных батарей на крыше

На срок окупаемости оказывают влияние следующие факторы:

  • Тип фотоэлементов и оборудования. На окупаемость оказывает влияние как величина КПД, так и первоначальная стоимость фотоэлементов;
  • Регион. Чем выше интенсивность солнечного света в вашей местности, тем меньше срок окупаемости;
  • Цена оборудования и монтажа;
  • Цена электроэнергии у вас в регионе.
  • Южная Европа ─ до 2 лет;
  • Средняя Европа – до 3,5 лет;
  • Россия ─ в большинстве регионов до 5 лет.

Эффективность солнечных коллекторов для сбора тепла и батарей для получения электрической энергии постоянно увеличивается. Правда не так быстро, как хотелось бы. Специалисты отрасли занимаются повышением КПД и снижением себестоимости фотоэлементов. В итоге всё это должно привести к уменьшению срока окупаемости и широкому распространению солнечных батарей.

Поделитесь в социальных сетях:ВКонтактеFacebookX
Напишите комментарий