Температура горения древесного и каменного угля

Месторождения и добыча породы

Ископаемое широко распространено – его запасы составляют 15 % от всей суши. Тройка стран-лидеров по добыче каменного угля:

  1. США – мировой лидер. Процент залежей составляет 23 – это более 1600 миллиардов тонн.
  2. Россия. Залежи оцениваются в 13 %.
  3. Китай. Показатель стремится к 11 %.

В России каменный уголь добывают в Кемеровской области, в Кузнецком месторождении, где находится 640 миллиардов тонн ископаемых. Открытие произошло в 1721 году М. Волковым. В 1842 году П. Чихачев оценил запасы бассейна. Во 2-й половине XIX века в Кузбассе начали добывать каменный угль.

В Якутии находится Эльгинское месторождение, его запасы составляют около 2 миллиардов тонн, в Тыве перспективны для разработки Элеготсткие залежи. Другие бассейны – Ленский, Тунгусский, Иркутский, Южно-Якутский, Печерский.

В США самые большие залежи расположены в штате Иллинойс (запас более 360 миллионов тонн).

В Казахстане находится 162 миллиарда тонн ископаемого. Одно из самых крупных месторождений – Экибастузское, другие бассейны:

  • Шубарколь и Кызылтал – по 2 миллиарда тонн;
  • Шоптыколь, Мамыт и Эгинсай – по 1 миллиарду тонн;
  • Каражыра – 890 миллионов тонн.

Месторождения каменного угля обозначают на карте в виде определенного символа – черного квадрата, а бурого – заштрихованного.

В республике Хакассия основное месторождение находится в Минусинской котловине. Разработки ведутся с 1904 г. Хакасский каменный уголь добывают в Изыхском и Черногорском бассейнах.

В Африке добывают минерал на территориях:

  • Зимбабве;
  • Мозамбика;
  • ЮАР.

Страны-экспортеры каменного угля по рейтингу, объем указан в миллионах тонн в год:

  • Австралия – 193;
  • Китай – 91;
  • ЮАР – 69,3;
  • Индонезия – 66,4;
  • США – 44,1;
  • Россия – 41;
  • Колумбия – 37,1;
  • Канада – 30,6;
  • Казахстан – 28;
  • Польша – 23.

Смотрите передачу о добыче камня в России:

Температура воспламенения и другие параметры

Процесс горения угля – это химическая реакция окисления углерода, протекающая при высокой начальной температуре с интенсивным выделением теплоты. Теперь попроще: угольное топливо не может воспламениться подобно бумаге, для возгорания требуется предварительный нагрев до 370-700 °С в зависимости от марки горючего.

Если ограничить количество поступающего кислорода (прикрыть поддувало, перевести ТТ-котел в режим тления), вместо СО2 образуется угарный горючий газ СО, выбрасываемый в дымоход, КПД горения существенно снизится. Чтобы добиться высокой эффективности, нужно обеспечить благоприятствующие условия:

Бурые угли воспламеняются при температуре +370 °С, каменные – 470 °С, антрациты – 700 градусов. Требуется предварительный нагрев отопительного агрегата с помощью дров (опилочных брикетов). Воздух в топливник подается с избытком, коэффициент запаса составляет 1.3-1.5. Горение поддерживается за счет высокой температуры раскаленного слоя углей, лежащих на колосниковой решетке

Важно обеспечить проход кислорода через всю толщу топлива, поскольку воздух движется через зольник благодаря естественной дымоходной тяге. Теоретическая температура сжигания и удельная теплоотдача различных видов топлива показана в сравнительной таблице

Заметно, что в идеальных условиях любое горючее выделит максимум теплоты при взаимодействии с нужным объемом воздуха

Теоретическая температура сжигания и удельная теплоотдача различных видов топлива показана в сравнительной таблице. Заметно, что в идеальных условиях любое горючее выделит максимум теплоты при взаимодействии с нужным объемом воздуха.

На практике создать подобные условия нереально, поэтому воздух подается с некоторым избытком. Реальная температура горения бурых углей в обычном ТТ-котле лежит в пределах 700…800 °С, каменных пород и антрацитов – 800…1100 градусов.

Если переборщить с количеством кислорода, энергия начнет расходоваться на подогрев воздуха и попросту вылетать в трубу, КПД печи заметно упадет. Причем температура огня может достигать и 1500 °С. Процесс напоминает обычный костер – пламя большое, тепла мало. Пример эффективного сжигания каменного угля ретортной горелкой на автоматическом котле представлен в видеосюжете:

Полноценное сжигание угольного топлива требует особого подхода к вопросу. Задача – достичь максимального КПД источника тепла, не перегреть теплоноситель и не устроить пожар из-за слишком высокой температуры.

Антрацит — самый калорийный коксующийся уголь

К каждому типу угля нужно приноровиться. Незнакомое горючее лучше засыпать мелкими порциями, регулируя тягу шибером и наблюдая за ростом температуры. Когда вычислите все нюансы горения данной марки, заполняйте топливник на 2/3.

Температура горения угля считается тем основным критерием, который позволяет избежать ошибок при выборе топлива. Именно от этой величины напрямую зависит производительность котла, его качественная работа.

Как сгорают дрова?

Не все дрова сгорают по-одинаковому. Некоторые из них пропадают в топках практически полностью, оставляя вместо себя всего лишь горстку пепла. Другие долго и нудно чадят, забивая остатками своего сгорания все топочное пространство.

Скорость и полнота сгорания дров также зависят не только от происходящих в открытом пламени химических реакций, но и от конструкции печи. Качественные печи имеют довольно сложное устройство, включающее в себя множество элементов, таких как золотник и поддувало, топка и колосники.

На полноту сгорания дров также будет влиять и их порода, а также (в очень существенной степени – удельная влажность).

горящие дрова

Но строго говоря для расчета тепловых устройств обычно не принимают во внимание разные характеристики дров, заготовленных из разных пород древесины. Для расчетов берется среднестатистическая величина, которая составляет для древесины 3800 калорий

Какие дрова горят жарче других?

Помимо теплотворности, которая характеризует количество тепловой энергии, выделяемой при сжигании дров – нас в ходе практической жизни может заинтересовать и жаропроизводительность – то есть та максимальная температура, которая может быть достигнута в топке при сжигании того или иного типа дров.

Различные виды топлива и различные породы дерева сгорают разными способами. Одни из них могут давать ровное и высокое пламя, а другие будут демонстрировать низкий огонь, но показывать большую температуру непосредственно в области горения.

жаропроизводительность дров

Существует два основных момента, которые влияют на температуру, производимую дровами при сгорании.

Прежде всего температура горения зависит от того, с какой интенсивностью в топку поступает кислород, необходимый для горения. Этот показатель определяется обычно конструкцией самой топки.

Также на температуру влияет и конструкция самой печи.

Печки и топки могут создаваться из разных материалов. И Каждый из материалов может особым образом влиять на температуру горения дров.

В массивной каменной печи дрова сгорают практически полностью, но процесс этот происходит сравнительно долго. С другой стороны печка-буржуйка, то есть топка, изготовленная из тонкого стального листа очень быстро остывает., раздавая тепло в окружающее пространство. При этом тепло из зоны горения постоянно переносится на стенки и далее в помещение. Вследствие этого дрова в таких печках сгорают практически без остатка.

Как измерить температуру горения дров?

Обычным термометром измерить температуру горения дров у вас вряд ли получится. Тем более – совсем пропащее дело определять температуру горения «на глазок». Для того, чтобы проводить такие исследования, необходимо запастись специальным прибором – пирометром.

Но заметьте, самая высокая температура горения дров вовсе не означает, что дрова такого типа могут выделить большее количество тепла.

Заметьте, что в хороших топочных устройствах, например в закрытых каминах можно искусственно уменьшать поступление кислорода из воздуха к сгорающим дровам, добиваясь тем самым повышения температуры сгорания и понижения теплоотдачи.

Для сравнения вы можете посмотреть еще одну табличку, в которой отражены теплотворные способности различных видов органического топлива.

теплотворные способности

Формула горения угля: два типа топлива

Когда происходит сгорание, какого либо топлива, дерева или угля, тогда возникает химическая реакция, в результате которой образуется тепло. Существует уравнение этой реакции, в результате которой образуется окись углерода (формула СО). Горение на этом не заканчивается, весь процесс поднимается, где и происходит реакция соединения окиси углерода и кислорода. Тогда сгорание выражается ярко-синим пламенем и вместе с этим происходит выделение тепла.

Топливо (уголь) делится на два типа: короткопламенное и длиннопламенное. Длиннопламенное топливо способно сгорать в два этапа. Первый этап – сгорают летучие газы, образовавшиеся над слоем угля, а затем, оставшееся топливо в виде кокса. Горит кокс отличительным коротким пламенем. В результате, после того, как выгорел весь углерод, остается шлак и зола.

Короткопламенное топливо:

  • Кокс;
  • Антрацит;
  • Древесный уголь.

При сжигании короткопламенного вида образуется большое количество тепла. Короткопламенный антрацит горит без запаха и дыма, не образуя остатка, а так же характеризуется низким пламенем.

Источники

  • https://ProfiTeplo.com/toplivo/44-temperatura-goreniya-uglya.html
  • https://kaminguru.com/kotel/temperatura-gorenija-uglja.html
  • http://fb.ru/article/279458/temperatura-goreniya-uglya-vidyi-uglya-udelnaya-teplota-sgoraniya-kamennogo-uglya
  • https://otivent.com/temperatura-goreniya-uglya
  • https://pechnoy.guru/pechi/topka-pechi/kak-topit-pech-uglem.html
  • http://teplodom1.ru/otoplraznoe/1426-gorenie-uglja-kak-im-topit-dlitelnoe-szhiganie.html
  • https://kaminguru.com/kotel/teplota-sgoranija-uglja.html
  • https://villadacha.ru/barbecue/temperatura-v-mangale.html
  • http://thermalinfo.ru/eto-interesno/udelnaya-teplota-sgoraniya-topliva-i-goryuchih-materialov
  • https://world-weather.ru/pogoda/russia/ugol_1/
  • https://teplo.guru/pechi/temperatura-goreniya-uglya.html
  • http://teploclass.ru/otoplenie/temperatura-goreniya-uglya

Зола

Из чего состоит зола? Когда дерево растет, оно формируется за счет фотосинтеза, т.е. преобразования солнечной энергии и углекислого газа (СО) в углерод (С). Из которого и состоит на 50%. Также дерево потребляет влагу. А из почвы забирает азот (Т), фосфор (Р), калий (К) и другие микроэлементы – вот это и есть зола. Наибольшее содержание будущей золы в коре (7%) и листьях (3%), а в древесине её до 2%. Кстати, чем старше дерево, тем меньше в нем золы. Поэтому в премиальных пеллетах и брикетах после сгорания золы остается меньше 1%. Также часть этих элементов разрушается во время горения и улетает в трубу. На образование золы в топке тратится энергия, соответственно чем больше золы, тем меньше тепла ушло по назначению. Зола хорошее удобрение, т.к. элементы, которое забрало растение из почвы возвращаются обратно. Зола может спекаться в шлак. Для каменного угля это нормальное явление. А вот для дров, премиальных пеллетов и брикетов нет, т.к. означает, что при их производстве были применены добавки. Для пеллетов из шелухи, соломы и других отходов наличие золы является нормальным показателем.

Образование и свойства

Уголь — горючее полезное ископаемое, представляющее собой изменённые остатки доисторической растительности, которые изначально накапливались в болотах и торфяниках. Древняя флора консолидировалась между другими слоями осадочных пород и преобразовывалась под воздействием давления и тепла на протяжении миллионов лет.

Таким образом под действием физических сил образовывались пласты и формировался состав каменного угля, включающий углерод (90%), водород (5%) и другие незначительные примеси. Поскольку углерод всё же преобладает, то химическая формула вещества обозначается С — первой буквой латинского слова Carbo.

Происхождение каменного угля подтверждается не только с помощью геологических исследований и методов химического анализа, но и многочисленными находками. В залегающих глубоко под землёй пластах очень часто встречаются отпечатки листьев доисторических папоротников и живых организмов. Активированный уголь является древесным и к ископаемому топливу отношения не имеет.

Образование каменного угля началось во время каменноугольного периода от 360 до 290 миллионов лет назад. Качество каждого месторождения определяется физико-химическими условиями формирования и длительностью их воздействия, что называется «органической зрелостью». Отсюда следует классификация породы на несколько разновидностей (рангов) по степени изменения:

  • Первоначально торф превращается в бурый уголь или лигнит. По сравнению с другими видами, он довольно мягкий и рыхлый, а цвет варьируется от чёрного до различных оттенков коричневого. Характеризуется высоким уровнем влажности и низким содержанием углерода, а, следовательно, и энергии.
  • За миллионы лет зрелость лигнита увеличивается и он превращается в суббитуминозные угли. По соотношению содержания воды и СО2 они находятся в промежуточном положении.
  • Дальнейшие изменения происходят до тех пор, пока не образуются битумные угли. Они довольно твёрдые и прочные, имеют чёрный стекловидный блеск.
  • При определённых условиях «дозревание» достигает качества антрацита, который отличается самым высоким содержанием углерода и низкой влажность. По энергопотенциалу эта марка является наиболее продуктивной.

Относительная плотность измеряется как удельный вес, представляющий собой отношение массы объекта к массе равного объёма воды при t 4 °C. Этот показатель для воды соответствует единице, а значит материалы с удельным весом менее 1 не тонут. Поскольку величина варьируется, в зависимости от ранга, её можно определить для разных марок угля:

  • антрацит — 1,47;
  • битумный — 1,32;
  • суббитуминозный — 1,3;
  • бурый — 1,29.

Эти цифры имеют непосредственное отношение к процессу обогащения потому, что примеси значительно изменяют стандартные характеристики. Например, удельный вес пирита (золото дураков), представляющего собой обычную примесь и основной источник серы в угле, составляет от 4,9 до 5,2. Поскольку пирит гораздо плотнее угля, для его удаления используются методы разделения по плотности.

Пиролизная печь: температура горения древесного угля

Древесный уголь – это вовсе не ископаемое. Данное топливо производится человеком в специальных пиролизных печах. Процесс его получения достаточно прост и заключается он в переработке древесины путем пиролиза. Проще говоря, нужно из дерева удалить всю влагу.

В процессе всего тления образуется много тепла, а влага испаряется и улетучивается. Дым, который вырабатывается, вторично перерабатывается в специальном отсеке и там сгорает полностью, образуя тепло.

Этапы получения древесного угля:

  • Ответственный этап – сушка;
  • Самый важный – пиролиз;
  • Затем – прокалка;
  • И в завершении – остывание.

Древесный уголь начинает воспламеняться при температуре 100 – 200 градусов, а разгорается до 800 – 900. При его горении выделяется достаточное количества тепла, способное обогреть помещение.

Применение

Основным использованием топлива является его сжигание для выделения тепла. Тепло используется не только для отопления частного дома и приготовления пищи, но и в промышленности для обеспечения технологических процессов, происходящих при высокой температуре.

В отличие от обычной печки, где процесс поступления кислорода и интенсивность горения слабо регулируется, в промышленных печах особое внимание уделяется контролю над подачей кислорода и поддержанием равномерной температуры горения. Рассмотрим основную схему сгорания угля

Рассмотрим основную схему сгорания угля.

  1. Идет нагревание топлива и испарение влаги.
  2. С ростом температуры начинается процесс коксования с выделением летучих коксовых газов. Сгорая, он дает основное тепло.
  3. Уголь превращается в кокс.
  4. Процесс горения кокса сопровождается выделением тепла, достаточного для запуска коксования следующей порции топлива.

В промышленных котлах горение кокса разделяется по разным камерам от горения коксового газа. Это позволяет осуществлять приток кислорода для кокса и газа с разной интенсивностью, добиваясь необходимой скорости горения и поддержания необходимой температуры.

Свойства конструкции углевыжигательной печи, основанной на использовании пиролиза

Индивидуальной категорией необходимо отметить кокс. Такой вид топлива не считается ископаемым. Он, скорее, олицетворяет течение прогресса, потому как полностью выполняется человеком. Для его возгорания достаточно маленькой температуры в 100-200°C. При этом в процессе горения кокса она может достигать порядка 800-900°C, что обуславливает хорошие качества выделения тепла. Как же делают этот удивительный продукт? Этот процесс весьма прост. Заключается он в специализированной деревообработке, позволяющей значительно видоизменить ее структуру, выделив из нее влажность. Для реализации этой сложной задачи применяют углевыжигательные печи. Как становится ясно из их названия, назначение данных устройств состоит в выполнении предназначений деревопереработки. Печи для изготовления кокса имеют конкретную структуру и похожие конструкционные элементы.

Рабочий принцип такого приспособления построен на воздействии процесса пиролиза на древесину, который и создает роль ее изменения. Газогенераторная печь для изготовления кокса состоит из 4 центральных элементов:

  • укрепленное основание;
  • топка;
  • отсек вторичной переработки;
  • дымотвод.

Чертежи данного устройства предоставляют возможность проследить, какие собственно процессы протекают изнутри конструкции. Попадая в топку, дрова начинают поэтапно истлевать. Данный процесс обусловлен отсутствием кислорода в камере сгорания, нужного для поддерживания настоящего огня. В процессе тления выделяется большое количество тепла, а жидкость, которая есть в дереве, улетучивается. Выдиляющийся в результате подобного влияния дым проникает в отсек вторичной переработки, где полностью горит, вырабатывая тепло.

Подобным образом углевыжигательная печь делает одновременно несколько задач. Первая из них дает прекрасную возможность создавать кокс, вторая — обеспечивает помещение необходимым числом тепла. Однако процесс изменения дров считается очень щекотливым, потому как малейшая задержка может привести к полному их сгоранию. Благодаря этому в нужный момент обуглившиеся заготовки нужно достать из печи.

Благодаря этому процесса мы сможем получить замечательный материал, который поможет полностью нагреть помещение зимой. Углевыжигательные печи при этом играют очень важную роль, потому как в природе кокс почти не встречается.

Виды топлива

Человеку очень нужно тепло для всех процессов жизнедеятельности: например, для обогрева жилища, готовки, плавления металлов и получения других видов энергии. Чтобы получать тепло и свет, человек использует топливо. Когда люди впервые добыли огонь, без топлива тоже не обошлось — им послужила древесина.

Топливо — это любое вещество, выделяющее энергию в ходе сгорания.

Существует четыре группы видов топлива:

  • твердое топливо,
  • жидкое топливо,
  • газообразное топливо.

На самом деле есть еще четвертая группа — ядерное топливо, но в этом случае механизм получения энергии другой. О нем мы рассказали в статье про ядерный реактор.

К твердому топливу относятся:

  • древесина,
  • горючие сланцы,
  • уголь,
  • торф.

Ископаемые твердые виды топлива, кроме сланцев, являются продуктом разложения органической массы растений. Торф — самый молодой из них, он представляет собой плотную массу, которая образовалась из перегнивших болотных растений. Уже не такие молодые (скажем, средних лет ) бурые угли — это темная однородная масса, которая окисляется и рассыпается на свежем воздухе. Горючие сланцы — полезные ископаемые, дающие смолу. Каменные угли — ребята с повышенной прочностью и небольшой пористостью.

Жидкое топливо — это, например, бензин или нефть. Газообразное — это смесь, содержащая в себе водород и окись углерода.

В горючей части топлива всегда есть углерод, кислород, водород, сера и азот. Кислород в соединении с углеродом или водородом уменьшает тепло, которое выделяется в процессе горения. Азот переходит в продукты сгорания, не окисляясь. Сера — вредная примесь, при сгорании которой выделяется в 4 раза меньше теплоты, чем при сгорании углерода.

Пламя

Температура в разных участках пламени Как видно из рисунка, температура на конце пламени может достичь 1400 С°. Этого достаточно для нагрева топлива и воспламенения выделившихся из него газов. В пункте 1 температура самая низкая, т.к. в ней мало кислорода (О), но много газов. Цвет пламени голубой или бесцветный, т.к. в этот момент из-за нагрева идет пиролиз, т.е. выделение газа. По краям кислорода становится больше и окрас пламени усиливается. В пункте 2, центре, кислорода все еще недостаточно, но газов много. Яркий цвет, это сгоревший углерод (С) и другие частицы. В пункте 3 горючие вещества практически полностью смешались с кислородом и температура пламени наиболее высокая. Цвет не такой яркий, т.к. твердые частички уже сгорели. Желтый и красный цвет пламени получается из-за наличия в нем твердых частиц. Когда их нет, пламя синее или голубое, как в газовой плите. А вот если пламя горит зеленым и другими странными цветами, это означает, что в топливе есть примеси, возможно, вредные. Горение происходит не только в видимой области, но и в невидимом инфракрасном диапазоне. Мы думаем, что это жар от огня, а это инфракрасные волны. Их можно увидеть с помощью инфракрасного сканера (термографии).

Роль в истории

О свойствах каменного угля люди знали ещё в далёком прошлом. Историки считают, что впервые в коммерческих целях его начали использовать в Китае. Есть свидетельства, что древняя шахта на северо-востоке страны предоставляла это топливо для выплавки меди и литья монет около I тысячелетия до нашей эры. Одна из самых ранних записей на территории Европы была сделана греческим учёным и философом Аристотелем, который упоминал уголь как камень.

Однако широкая добыча началась во время промышленной революции XVIII—XIX вв. , когда спрос на уголь значительно вырос. Этому во многом способствовал усовершенствованный паровой двигатель Джеймса Уатта, запатентованный в 1769 году. Кроме того, в этот период многократно увеличилось изготовление чугуна и стали, требовавшихся для строительства железных дорог, станков и механизмов.

Уголь также использовался для производства фонарного газа. Этот тип освещения настолько распространился в крупных населённых пунктах, что появился термин «городской газ». Лидером по внедрению технологии оказался Лондон. Более широкому применению помешало наступление эры электричества, и с тех пор будущее полезного ископаемого стало тесно связано с выработкой электроэнергии. Первая действующая станция обеспечивала током бытовые светильники. Она была разработана Томасом Эдисоном и введена в эксплуатацию в 1882 г. в Нью-Йорке.

В 1960-х годах нефть обогнала уголь в качестве крупнейшего источника первичной энергии с огромным ростом в транспортном секторе

Несмотря на конкуренцию, он продолжает занимать важное положение в мировой структуре производства электроэнергии, обеспечивая более трети глобальной потребности. Большие объёмы коксующихся углей применяются в металлургической промышленности

Максимальная температура горения угля (видео)

На сегодняшний день, такое применение разнообразного твердого топлива, в виде древесины, угля или торфа, является популярным. Его используют не только в быту для обогрева или приготовления пищи, но во многих отраслях промышленности.

Комментарии

0 Даниил 16.02.2018 13:06 Никогда об температуре горения не задумывался, но на практике антрацит показал себя лучше всего. Горит дольше и очень мало после него жужалки, в отличии от обычного угля. В результате антрацит и экономнее, отлично горит и мало после него отходов. Цитировать

Обновить список комментариев RSS лента комментариев этой записи

Факторы, влияющие на температуру горения

Температура горения дров в печи зависит не только от породы древесины. Значимыми факторами также являются влажность дров и сила тяги, которая обусловлена конструкцией теплового агрегата.

Влияние влажности

У свежесрубленной древесины показатель влажности достигает от 45 до 65%, в среднем – около 55%. Температура горения таких дров не поднимется до максимальных значений, так как тепловая энергия будет уходить на испарение влаги. В соответствии с этим снижается теплоотдача топлива.

Чтобы при сгорании древесины выделялось необходимое количество теплоты, используются три пути:

  • для обогрева помещений и приготовления пищи используется почти вдвое больше свежесрубленных дров (это оборачивается ростом расходов на топливо и потребностью в частом обслуживании дымовой трубы и газоходов, в которых будет оседать большое количество сажи);
  • свежесрубленные дрова предварительно высушиваются (бревна пилятся, раскалываются на поленья, которые укладывают в штабель под навес – для естественной сушки до 20% влажности требуется 1-1,5 года);
  • закупаются сухие дрова (финансовые затраты компенсируются высокой теплоотдачей топлива).

Теплотворная способность березовых дров из свежесрубленной древесины достаточно высока. Также пригодно к использованию топливо из свежесрубленного ясеня, граба и других твердых пород древесины.

Порода древесиныСоснаБерёзаЕльОсинаОльхаЯсень
Теплотворная способность свежесрубленного дерева (влажность около 50%), кВт м3190023711667183519722550
Теплотворная способность полусухих дров (влажность 30%), кВт м3207125791817199521482774
Теплотворная способность древесины, пролежавшей под навесом не менее 1 года (влажность 20%), кВт м3216627161902211722442907

Влияние подачи воздуха

Ограничивая поступление кислорода в топку, мы снижаем температуру горения древесины и уменьшаем теплоотдачу топлива. Длительность сгорания закладки топлива можно увеличить, прикрывая заслонку котельного агрегата или печки, но экономия топлива оборачивается низким КПД сжигания из-за неоптимальных условий. К дровам, горящим в камине открытого типа, воздух поступает свободно из помещения, и интенсивность тяги зависит в основном от характеристик дымохода.

Упрощенная формула идеального сгорания древесины такова:

Углерод и водород сжигаются при подаче кислорода (левая часть уравнения), в результате образуется тепло, вода и углекислый газ (правая часть уравнения).

Чтобы сухие дрова горели при максимальной температуре, объем воздуха, который поступает в камеру сгорания, должен достигать 130% от объема, требуемого для процесса горения. При перекрывании потока воздуха заслонками образуется большое количество угарного газа, и причиной тому недостаток кислорода. Угарный газ (недожженный углерод) уходит в дымоходную трубу, при этом падает температура в камере сгорания и уменьшается теплоотдача дров.

Экономный подход при использовании твердотопливного котла на дровах – установка теплоаккумулятора, который будет запасать излишки тепла, образующегося при горении топлива в оптимальном режиме, с хорошей тягой.

С дровяными печами так экономить топливо не получится, поскольку они напрямую греют воздух. Тело массивной кирпичной печи способно аккумулировать относительно небольшую часть тепловой энергии, а у металлических печек излишки тепла напрямую уходят в дымоход.

Если вы открыли поддувало и увеличили тягу в печи, интенсивность горения и теплоотдача топлива увеличится, но и потери тепла также возрастут. При медленном сгорании дров возрастает количество угарного газа и уменьшается теплоотдача.

Образования угарного газа

Формулы углекислоты CO2 и угарного газа СО похожи, но разница большая. Для горения с образованием углекислоты СО2 требуется много кислорода (О), а если кислорода не хватает, то образуется угарный газ СО. Более того, при горении с недостатком кислорода (О), выделяется меньше энергии. С + 2О = СО2 + 8137 калорий. С + О = СО + 2428 калорий. Аналогичные процессы происходят и в нашем организме при преобразовании углеводов (С6Н1206) в энергию. При недостатке кислорода (О), анаэробном дыхании, у спринтеров, выделяется в 2 раза меньше энергии, чем при аэробном дыхании у марафонцев. Помимо того, что горение с недостатком кислорода снижает КПД топлива, так еще и остальные компоненты топлива не успевают сгорать. Они оседают на стенках дымохода в виде сажи и улетают в трубу. Темный дым из трубы в большинстве случаев как раз и говорит нам о том, что в топке не хватает воздуха и выделяется угарный газ (СО). Также при таком режиме горения печь или котел требуется чистить чаще, вдобавок сажа может воспламениться и привести к пожару. Попытки растянуть время горения топлива путем ограничения подачи воздуха загрязняют атмосферу, котел и не позволяют извлечь из топлива большинство энергии. Поэтому лучше сжигать топливо сразу, а излишки тепла передавать, например, при водяном отоплении, в резервную емкость, которая потом тепло будет передавать теплоносителю. Либо сжигать маленькие порции топлива, например, в пеллетном котле с автозагрузкой. Не забудьте и про то, что угарный газ может попасть в помещение и привести к отравлению или смерти его обитателей. Существуют модели твердотопливных котлов, в которых подачу воздуха может регулировать автоматика. Это удобно, когда вы хотите ночью поддерживать тепло и при этом не просыпаться для закладки топлива, но это не должно приводить к тлению и образованию угарного газа (СО), по описанным выше причинам. Есть тонкость с угарным газом: в основном на планете он появляется от сжигания угля, нефти (бензина) и газа. До момента сжигания угарный газ находился в твердом или жидком состоянии, и не загрязнял атмосферу, а после сжигания стал. Биотопливо, такое как пеллеты или брикеты, сделаны из дерева, дерево поглотили углерод (С) из атмосферы, при сжигании выделили обратно, т.е. в атмосфере его не стало больше. Поэтому биотопливо считается экологичным, при условии его правильно сжигания.

Сжигание — кокс

Схема абсорбера для кондукто-метрического титрования.  

Сжигание кокса продолжают обычно 10 — 15 мин. Затем трубку с аскаритом снимают и взвешивают на аналитических весах с той же точностью.  

Сжигание кокса ведут с недостатком воздуха, поэтому в дымовых газах содержится большое количество окиси углерода. Этот прием дает возможность увеличить скорость выжига, сократить подачу воздуха в регенератор, снизить выделение тепла при сгорании кокса, улучшить отвод избыточной теплоты и уменьшить площадь поперечного сечения аппарата.  

Дли сжигания кокса Представляет собой кварцевую трубку длиной 800 мм, нагреваемую тремя печами. Длина первых двух печей ( зона горения) по 125 мм, а третьей ( зона дожига) — 250 мм. Температура в печах поддерживается соответственно равной 590, 870 и 870 С.  

Скорость сжигания кокса повышается с увеличением.  

При сжигании кокса образуются дымовые газы, содержащие значительное количество окиси углерода и имеющие высокую температуру. В котле-утилизаторе П-1 этот газ сжигается, и за счет физического и химического тепла дымовых газов вырабатывается водяной пар. Количество пара превышает необходимое для нужд установки термоконтактного крекинга, и, следовательно, эта установка служит как бы дополнительной котельной для нефтеперерабатывающего завода.  

При сжигании кокса лодочку вводят сразу же в зону наибольшего накала муфеля.  

Изменение содержания золы и металлов ( в вес. % — Ю 4 на кокс от температуры прокаливания.  

При сжигании кокса значительная часть ванадия и никеля остается в золе. При содержании в золе V2O5 более 1 0 % экономически целесообразно извлекать из нее ванадий в том случае, если количество золы составляет 100 — 150 т / сут. Показана возможность и целесообразность извлечения никеля и ванадия в виде сплава с железом. Первая установка по извлечению ванадия ( 544 кг / сут) из золы с котельной установки, сжигающей нефтяной кокс из венесуэльской нефти с высоким содержанием ванадия, сооружена в Канаде.  

Схема установки термоконтактного крекинга ( коксования в кипящем слое.  

При сжигании кокса образуются дымовые газы, содержащие значительное, количество окиси углерода и имеющие высокую температуру. В котле-утилизаторе П-1 этот газ сжигается и вырабатывается водяной ftap. Количество пара превышает необходимое для нужд установки термоконтактного крекинга, и, следовательно эта установка служит как бы дополнительной котельной для НПЗ.  

Воздух для сжигания кокса подается в регенератор по расположенным внутри него вертикальным патрубкам, присоединенным к внешнему коробчатому коллектору. Этот коллектор помещен над регенератором. Патрубки погружены в слой катализатора примерно на одну треть высоты зоны сжигания.  

Шарошки для чистки косых ходов.  

Горелки для сжигания кокса и расплавления золы ( рис. 103) изготовлены из труб, расположенных одна в другой; наружная труба диаметром 31 — 37 мм и внутренняя — 12 мм.  

Рассматривается вариант сжигания кокса с таким малым содержанием серы, учет которого несущественно изменил бы конечные результаты расчета.  

Поделитесь в социальных сетях:ВКонтактеFacebookX
Напишите комментарий