Тепловые насосы для отопления дома: виды и принцип работы

Тепловой насос «вода — вода»

Одной из разновидностей геотермального источника тепла могут быть подземные воды. Они имеют постоянную температуру (от +7 С и выше), и в значительном количестве залегают на различных глубинах на территории РБ. По технологии, подземные воды поднимаются центробежным насосом из скважины и поступают на станцию тепломассообмена, где передают энергию антифризу нижнего контура теплового насоса. Эффективность работы данной системы зависит от уровня залегания грунтовых вод (в зависимости от глубины подъема, требуется определенная мощность помпы), расстояния от заборной скважины до станции обмена. Эта технология имеет один из самых высоких показателей COP, однако имеет ряд особенностей, ограничивающих ее применение.

Среди них:

  • Отсутствие подземных вод, либо низкий уровень их залегания;
  • Отсутствие постоянного дебета скважины, понижение статического и динамического уровней;
  • Необходимость учитывать солевой состав и загрязненность (при не надлежащем качестве воды, происходит засорение теплообменника, снижаются показатели производительности)
  • Необходимость устройства дренажного колодца для сброса значительных объемов отработавшей воды (от 2200 л/ч и более)

Как показывает практика, установка таких систем целесообразна, если в непосредственной близости имеется водоем или река. Отработавшую воду, также можно использовать в хозяйственных и промышленных целях, например, для полива, или организации искусственных водоемов.

Что качается качества заборной воды то, например, немецкий производитель альтернативных отопительных систем Stiebel Eltron рекомендует следующие параметры: общая доля железа и магния не более 0,5 мг/л, содержание хлоридов менее 300 мг/л, отсутствие осаждаемых веществ. При превышении этих параметров необходимо установка дополнительной системы очистки — станции подготовки и обессоливания, что повышает материалоемкость проекта.

ООО «Нова Грос» — Авторизованная монтажная организация Stiebel Eltron

Связаться с нами

Связаться с нами

Как устроен внутренний контур теплового насоса

Внутренний контру таких систем устроен довольно традиционно. Нагревать помещения или, наоборот, охлаждать их могут теплые полы с водяным теплоносителем или специальные устройства – фанкойлы, напоминающие усовершенствованный кондиционер.

В таких системах не используются традиционные отопительные радиаторы, так как максимальная температура теплоносителя не превышает 55 градусов Цельсия.

Установка фанкойлов наиболее предпочтительна, так как они более эффективно могут работать как в режиме тепловентилятора холодной зимой, так и в режиме охлаждающего кондиционера жарким летом. Летом температура воздуха, поступающего из вентилятора может достигать минимальной величины в 7 градусов, что безусловно будет достаточно для эффективного охлаждения дома.

Отбор теплоты от горной породы

Скальная порода требует бурения скважины на достаточную глубину (100-200 метров) или нескольких таких скважин. В скважину опускается U-образный груз с двумя пластиковыми трубками, составляющими контур. Трубки заполняются антифризом. По экологическим соображениям это 30 % раствор этилового спирта. Скважина заполняется грунтовыми водами естественным путём, и вода проводит теплоту от камня к теплоносителю. При недостаточной длине скважины или попытке получить от грунта сверхрасчётную мощность, эта вода и даже антифриз могут замёрзнуть, что и ограничивает максимальную тепловую мощность таких систем. Именно температура возвращаемого антифриза и служит одним из показателей для схемы автоматики. Ориентировочно на 1 погонный метр скважины приходится 50-60 Вт тепловой мощности. Таким образом, для установки теплового насоса производительностью 10 кВт необходима скважина глубиной около 170 м. Нецелесообразно бурить глубже 200 метров, дешевле сделать несколько скважин меньшей глубины через 10- 0 метров друг от друга. Даже для сравнительно небольшого дома площадью в 110-120 м2 при небольшом энергопотреблении срок окупаемости 10-15 лет. Почти все имеющиеся на рынке установки работают и летом, при этом теплота (по сути солнечная энергия) отбирается из помещения и рассеивается в породе или грунтовых водах. В скандинавских странах со скальным грунтом гранит выполняет роль массивного радиатора, получающего теплоту летом (днём) и рассеивающего его обратно зимой (ночью). Также теплота постоянно приходит из недр Земли и от грунтовых вод.

Расчет теплового насоса

Как мы уже упоминали выше, низкопотенциальными источниками тепла для таких насосов чаще всего бывают перечисленные ниже среды:

  1. Воздух из наружного пространства с температурой в среднем от -15 до +25 градусов.
  2. Воздух из обогреваемого помещения, его температура составляет +15 — +25 градусов.
  3. Воздух, из подпочвенного зонда нагретый до плюс 4 — 10 градусов.
  4. Воздух из геотермальных пластов, температура которого может быть 10 и более градусов.
  5. Воздух из донных зондов незамерзающих водоемов с температурой 0 – 10 градусов, в том числе и полученный в зондах, установленных на каналах промышленных стоков предприятий.

Методика расчета

Любой тепловой расчет является сложнейшим процессом, осуществить который доступно только квалифицированным специалистам. Тем не менее, можно предложить упрощенную методику, достаточную для получения результата, определяющего выбор той или иной модели агрегата.

Расчет сводится к выполнению ряда этапов:

  1. Определение величины тепловых потерь через ограждающие элементы строения – стены, потолки, чердачные помещения, окна, двери и прочее. Этого можно достичь, воспользовавшись следующей зависимостью:

Qок = S x (tвн – t нар) х (1 + ?b) x n : Rт, где

  • расчетные значения теплопроводности материалов ограждающих конструкций;
  • коэффициент рассеивания тепла с внутренних поверхностей;
  • то же, для наружных поверхностей.

После проведения предварительных вычислений определяем суммарные потери тепла от различных факторов:

Qт.пот = Qок+Qи-Qбл, где

  1. Основываясь на полученных результатах можно рассчитать потребность в электроэнергии в течение года. Для этого воспользуемся соотношением:

Qгод = 24х0,63 х Qт.пот х ((d x (tвн-tнар.ср) : (tвн-tнар)) (кВт/час) в год, где:

  • tвн- желательная величина температуры во внутренних помещениях дома;
  • t нар – фактическая наружная величина температуры;
  • tнар.ср – среднегодовая величина температуры в регионе;
  • d – протяженность отопительного периода, дней.
  1. Желая иметь более достоверное представление о теплонасосе, нужно сделать расчет величины тепловой мощности, которая понадобится, чтобы разогреть воду в системе отопления дома. Это доступно с использованием такой расчетной формулы:

Qгор.в = V x 17 кВт/ за год, где:

Рекомендуется полученный результат увеличить на 10%, учитывая более интенсивную работу системы при пиковых нагрузках. Предварительный расчет мощности теплового насоса для отопления дома позволяет сделать безошибочный выбор установки.

Для выполнения расчета можно использовать специальный калькулятор, они в изобилии представлены в интернете

Геотермальные насосы

Геотермальные тепловые насосы можно разделить на два типа – замкнутый и открытый. При этом система открытого типа предназначена для нагрева воды, проходящей через тепловой насос, причем после прохождения по системе вода выводится в землю.

Такая система будет идеально работать при наличии большого объема чистой воды с учетом того, что ее потребление не будет наносить вред окружающей среде, и не будет вступать в противоречие с действующим законодательством.

Замкнутые системы, в свою очередь, можно классифицировать по следующим типам:

  • Геотермальный с горизонтальным расположением, когда коллектор размещается в траншее ниже глубины промерзания грунта, в среднем, глубина находится в пределах полутора метров. Коллектор следует укладывать кольцами для того, чтобы свести к минимуму земляные работы и обеспечить большой контур на маленькой площади. Этим способом можно пользоваться при наличии свободных земельных участков.
  • Геотермальный с вертикальным расположением, когда коллектор размещается на глубине до 200 метров в скважине. Данный способ используется при отсутствии свободных земельных площадей, соответствующих требованиям устройства горизонтального расположения коллектора, что нередко случается при неровном ландшафте местности.
  • Геотермальный водный – в этом случае коллектор помещается в водоем ниже глубины его промерзания, укладка также выполняется кольцами. Ограничением применения такой системы может быть только минимальный объем воды или недостаточная глубина водоема.

Тепловой насос

Прежде чем приступить к детальному рассмотрению устройства, необходимо расшифровать само понятие “тепловой насос”, поскольку далеко не все люди знают, что это такое. 

Что собой представляет

Итак, тепловой насос представляет собой специальное оборудование, которое работает по прямому или обратному циклу термодинамической машины. Основной его задачей является перенос тепла из одной среды в другую при помощи термодинамически расширяющегося газа или жидкости с определёнными свойствами.

Если буквально: тепловой насос – комплекс оборудования, позволяющий передавать тепло от нагретого тела к холодному. Конструктивно состоит из двух основных блоков: внутреннего – для установки внутри помещений и наружного.

Внутренний блок выполнен в виде металлического шкафа, в котором располагаются: компрессор, дроссели, расширительный бак. От внутреннего блока идёт разводка труб на систему отопления или кондиционирования.

Тепловые насосы, изготавливаемые крупными заводами, оснащаются управляющей автоматикой. Она информирует пользователя о текущем состоянии, критических параметрах насоса, а также позволяет управлять режимами работы.

Технические характеристики

Тепловой насос любой конструкции обладает следующими основными параметрами:

  • КПД в режиме нагрева (СОР);
  • коэффициент энергоэффективности в режиме охлаждения (EER).

Коэффициент СОР показывает уровень энергозатрат на нагрев помещений внутри зданий. То есть, сколько киловатт тепловой энергии будет получено при затратах 1 кВт электричества. Диапазон СОР может быть 3-5, а EER – 5-7.

Не менее важными являются и другие технические характеристики:

  1. диапазон рабочих температур для работы насоса в стабильном режиме;
  2. максимально допустимая длина труб, по которым будет протекать хладагент или теплоноситель;
  3. мощность и тип компрессора, одно- или трёхфазное питание;
  4. внутренняя площадь медного теплообменника;
  5. перепад высот между источником и потребителем, для функционирования насоса в заданных режимах;
  6. тип используемых теплоизоляционных материалов;
  7. уровень шумов компонентов установки в разных режимах работы.

Таблица 1. Параметры тепловых насосов мощностью 4,5 кВт и 9 кВт.

Температура источника, °С

Тепловая мощность насоса, кВтЭлектрическая мощность, кВтСОРТемпература входной воды, °С

Температура выходной воды, °С

20

4,51,23,753050

7

1,453,1

-15

2,481,81
2092,4

3,75

72,9

3,1

-155

1,8

Принцип работы теплового насоса

Принцип работы основан на теплопередаче от нагретой среды в холодную посредством хладагента, циркулирующего по замкнутому контуру. Для работы насоса достаточно, чтобы разница температур составляла минимум 1°С.

Упрощённая схема, объясняющая принцип работы теплового насоса.

В качестве источника тепла или холода могут выступать массивные тела со стабильной температурой в течение достаточно длительного времени, независимо от условий окружающей среды. Это может быть грунт, вода, камни или воздух. То есть, чтобы охладить или нагреть помещение, достаточно транспортировать теплообменную среду по замкнутому контуру между источником и потребителем, а также изменять её температуру путём термодинамического сжатия или расширения.

Тепловой насос работает так:

  1. При включении насоса теплоноситель начинает двигаться по замкнутому контуру системы.
  2. В ходе циркуляции теплоноситель от среды-источника при прохождении через теплообменник нагревается.
  3. Нагретый теплоноситель начинает нагревать хладагент при попадании во внутренний циркуляционный контур.
  4. Хладагент начинает испаряться внутри испарителя, то есть переходит из жидкого в газообразное состояние.
  5. Испаренный хладагент по коммуникациям попадает в компрессор, сжимается и начинает нагреваться (эффект Джоуля-Томсона).
  6. После сжатия нагретый хладагент попадает в конденсатор, внутри которого происходит обмен теплом с контуром системы отопления дома. Там он теряет свою температуру, охлаждается и снова переходит в жидкое состояние.
  7. Жидкий хладагент по трубам при прохождении через редукционный клапан теряет высокое давление и снова поступает в испаритель.

Тепловой насос «воздух — воздух»

В качестве низкопотенциального источника энергии, данный тип оборудования использует уличный воздух. Внешне он не отличается от обычной сплит — системы кондиционирования, однако имеет ряд функциональных особенностей, позволяющих ему работать при низких температурах (до -30 С) и «изымать» энергию из окружающей среды. Обогрев дома осуществляется непосредственно теплым воздухом, нагреваемом в конденсаторе теплонасоса.

Достоинства ТН «воздух — воздух»:

  • Невысокая стоимость
  • Малое время монтажных работ и сравнительная простота установки
  • Отсутствие возможности утечки теплоносителя

Недостатки:

  • Значительное снижение СОР при низких температурах (до 1,2)
  • Устойчивая работоспособность до -20 С
  • Необходимость установки внутреннего блока в каждую комнату или организацию системы воздуховодов для подачи нагретого воздуха во все помещения.
  • Невозможность получения горячей воды (ГВС)

На практике, такие системы применяются для сезонного жилья и не могут выступать в качестве основного источника обогрева.

Типы тепловых насосов

В зависимости от принципа работы тепловые насосы подразделяются на компрессионные и абсорбционные.

Компрессионные тепловые насосы всегда приводятся в действие с помощью механической энергии (электроэнергии), в то время как абсорбционные тепловые насосы могут также использовать теплоту в качестве источника энергии (с помощью электроэнергии или топлива).

В зависимости от источника отбора теплоты тепловые насосы подразделяются на:

1) геотермальные (используют теплоту земли, наземных либо подземных грунтовых вод);

2) воздушные (источником отбора теплоты является воздух);

3) использующие производную (вторичную) теплоту (например, теплоту трубопровода центрального отопления). Подобный вариант является наиболее целесообразным для промышленных объектов, где есть источники паразитной теплоты, которая требует утилизации.

Геотермальный тепловой насос может быть:

– замкнутого типа (горизонтальным, вертикальным или водным);

– открытого типа;

– с непосредственным теплообменом.

Рис. 1. Геотермальный тепловой насос

Рис. 2. Воздушный тепловой насос

Геотермальные тепловые насосы имеют такое устройство.

а) замкнутого типа:

– горизонтальные:

Коллектор размещается кольцами или извилисто в горизонтальных траншеях ниже глубины промерзания грунта (обычно от 1,2 м и более). Такой способ является наиболее экономически эффективным для жилых объектов при условии отсутствия дефицита земельной площади под контур.

– вертикальные:

Коллектор размещается вертикально в скважины глубиной до 200 м. Этот способ применяется в случаях, когда площадь земельного участка не позволяет разместить контур горизонтально или существует угроза повреждения ландшафта.

– водные:

Коллектор размещается извилисто либо кольцами в водоёме (озере, пруду, реке) ниже глубины промерзания. Это наиболее дешёвый вариант, но есть требования по минимальной глубине и объёму воды в водоёме для конкретного региона.

– с непосредственным теплообменом (DX – сокращенно от английского «direct exchange» – «прямой обмен»).

В отличие от предыдущих типов, хладагент компрессором теплового насоса подаётся по медным трубкам, расположенным:

– вертикально в скважинах длиной 30 м и диаметром 80 мм;

– под углом в скважинах длиной 15 м и диаметром 80 мм;

– горизонтально в грунте ниже глубины промерзания.

Циркуляция хладагента компрессором теплового насоса и теплообмен фреона напрямую через стенку медной трубы с более высокими показателями теплопроводности обеспечивает высокую эффективность и надёжность геотермальной отопительной системы.

б) открытого типа:

Подобная система использует в качестве теплообменной жидкости воду, циркулирующую непосредственно через систему геотермального теплового насоса в рамках открытого цикла, то есть вода после прохождения по системе возвращается в землю. Этот вариант возможно реализовать на практике лишь при наличии достаточного количества относительно чистой воды и при условии, что такой способ использования грунтовых вод не запрещён законодательством.

Рис. 3. Схема компрессионного теплового насоса: 1 – конденсатор; 2 – дроссель; 3 – испаритель; 4 – компрессор

Промышленные модели тепловых насосов по виду теплоносителя во входном и выходном контурах насосы делят на восемь типов: «грунтвода», «вода-вода», «воздух-вода», «грунт-воздух», «вода-воздух», «воздух-воздух» «фреон-вода», «фреон-воздух». Тепловые насосы могут использовать теплоту выпускаемого из помещения воздуха, при этом подогревать приточный воздух (рекуператоры).

Разновидности тепловых насосов

По типу используемого вида рассеянного тепла различают тепловые насосы:

  • грунт-вода (используют закрытые грунтовые контуры или глубокие геотермальные зонды и водяную систему отопления помещения);
  • вода-вода (используют открытые скважины для забора и сброса грунтовых вод — внешний контур не закольцованный, внутренняя система отопления — водяная);
  • вода-воздух (использование внешних водяных контуров и системы отопления воздушного типа);
  • тепловой насос воздух-воздух (использование рассеянного тепла внешних воздушных масс в комплекте с воздушной системой отопления дома).


Схема и принцип действия теплового насоса

Принцип работы

Схема работы теплонасоса. (Для увеличения нажмите)

Достигая температуры кипения 10С хладагент становиться газообразным. После отдачи тепла газ переходит в жидкое состояние и опять направляется по контуру для дальнейшего подогрева.

Более подробно весь процесс выглядит так:

  1. При закипании хладагент направляется по трубопроводу в электрический компрессор.

      Пребывая в газообразном состоянии, хладагент сжимается компрессором до высокого       давления. Это создает еще большее повышение температуры.

С компрессора горячий газ направляется в конденсатор, где нагревается теплоноситель отопительной системы дома.
Отдав в конденсаторе тепло, газ переходит в жидкое состояние и через капилляр попадает в испаритель.

На этом полный цикл завершается, и хладагент начинает проходить повторный виток.

Принцип работы теплового насоса

Для многих данного рода системы отопления кажутся чрезмерно сложными и дорогими, но на самом деле с системой, подобной тепловому насосу мы встречаемся почти каждый день. Обычный домашний холодильник — это разновидность теплового насоса, только работающего в обратную сторону, то есть на охлаждение. Тепло из морозильной камеры забирается, нагревает хладагент, который затем циркулирует в радиаторе на задней стенке, поэтому стенки холодильника часто теплые или горячие.

Устройство

Основными узлами теплового насоса являются:

  • компрессор;
  • теплообменник;
  • управляющий модуль.

Наиболее важную функцию в передаче тепла, выполняет именно компрессор, поэтому подробнее разберем принцип его работы. Как правило, в тепловых насосах устанавливаются спиральные компрессоры. Внутри такого компрессора установлены 2 спиралевидные пластины, одна из которых жестко закреплена, а другая подвижна. Подвижная пластина находится между витками неподвижной.

Принцип сжатия спирального компрессора заключается в том, что между пластинами попадает несжатый воздух, подвижная пластина совершает колебания, похожие на круговые, и тем самым постепенно сгоняя попавший воздух к центру спирали, соответственно объем, в котором было первоначальное количество воздуха уменьшается и тем самым температура воздуха увеличивается.

Принцип действия теплового насоса для отопления дома

  • теплоноситель циркулирует по контуру, который контактирует с окружающей средой, будь это вода, почва или воздух, и забирает некоторое количество тепла;
  • после прохождения внешнего контура, теплоноситель попадает в теплообменник, который еще называется испарителем. Теплообменник заполнен хладагентом, который преобразуется из жидкого состояния в газообразное, по средствам высокого давления, при этом температура в испарителе должна быть -5 С;
  • после испарителя хладагент в газообразном состоянии переходит в компрессор, где под действием высокого давления (сжатия), температура его возрастает;
  • далее, уже нагретый газ попадает во второй теплообменник, который называется конденсатор, где теплом обмениваются: нагретый ранее газ и хладагент, циркулирующий по внутреннему контуру (который, как правило, уже является системой отопления дома). Подача тепла в отопительную систему регулируется специальным редукционным клапаном. С помощью этого клапана давление понижается, хладогент остывает и цикл начинается снова.

Коэффициент трансформации

Коэффициент трансформации (эффективности) — это соотношение выработанной помпой тепла с учетом затраченного электричества (то есть КПД термонасоса). У разных видов насосов этот коэффициент отличается:

  • В случае водяного оборудования коэффициент равняется 5 независимо от сезона. Это обозначает, что во время потребления 1 кВт/ч электричества система выдает 5 кВт/ч тепловой энергии.
  • У грунтовых помп коэффициент меньше — 4,1−4,5.
  • Самый низкий коэффициент у воздушных насосов, причем эффективность значительно зависит от температуры воздуха. Так при 0C размер коэффициента равняется примерно 3,6, а при -17C он не более 1,6.

Что такое тепловой насос?

Тепловой насос — прибор, поглощающий из окружающей среды (вода, земля, воздух) низко потенциальную тепловую энергию и передающий ее в системы теплоснабжения с более высокой температурой.

Природа вокруг нас пропитана энергией. Даже мороз обладает теплом. Энергию невозможно извлечь из окружающей среды только при температуре -273 °С. Поэтому даже в самую лютую зиму загородный дом может отапливаться за счет энергии, полученной от природы.

В зависимости от источника энергии (вода, земля, воздух), происходит модификация тепловых насосов. Однако наиболее практичным и испытанным является геотермальный тепловой насос, применяющий энергию грунта. Он идеально подходит для российских условий.

Геотермальное отопление работает по одному из трех направлений:

  1. Сквозь специальную трубу, установленную в скважине, грунтовые воды извлекаются на поверхность земли. Они имеют определенную температуру. Проходя через теплообменник, вода передает свое тепло, за счет которого совершается прогрев дома. Затем вода возвращается в грунт, ниже по течению.
  2. В скважину глубиной примерно 75 — 100 метров опускается резервуар с антифризом, температура которого может повышаться от окружающего грунта. Тепловой насос разгоняет антифриз и пропускает его через теплообменник. За счет этого совершается отдача тепла.
  3. В данном случае бурение скважины не предусматривается, однако дом должен находиться рядом с крупным водоемом. Специальная магистраль в виде зондов прокладывается по дну водоема. Таким образом происходит перекачивание воды и извлечение из нее тепла. Важный нюанс — достаточная глубина водоема, которая даже зимой под толщей льда позволит сохранять до 150 сантиметров свободной воды.

Использование геотермального отопления, как и любой системы теплоснабжения, позволит не только обогреть дом, но и обеспечить горячей водой, обогреть автостоянку или теплицу, нагреть воду в бассейне

Как подобрать тепловой отопительный насос воздух-вода

Правильно выбрав тепловой насос для отопления дома воздух-вода, можно раз и навсегда решить вопрос обогрева жилых и промышленных помещений. Подбор подходящей тепловой станции выполняют следующим образом:

  • Тип корпуса – производители предлагают две базовых конструкции. Низкотемпературный моноблочный тепловой насос типа воздух-вода примечателен тем, что в помещении не устанавливается никакого оборудования, все необходимые узлы расположены на улице (либо в отдельном изолированном помещении). В дом входит только подающий и обратный трубопровод отопления. Сплит – системы, больше предназначены для бытового использования. Внешний блок устанавливается на улице и подключается к емкости накопителю. Разогретый фреон разогревает конденсатор, который методом косвенного нагрева передает тепло жидкости, используемой в качестве теплоносителя.
  • Функциональные возможности – некоторые модели предназначены для подключения только к системе водяного обогрева здания. Применение других теплонасосов воздух-вода, подходит для отопления и горячего водоснабжения.
  • Зависимость производительности от температуры окружающей среды – бытовые модели обычно ограничены температурой от +45°С до -15°С, можно приобрести оборудование, способное вырабатывать тепловую энергию даже при -25-32°С. Эффективность системы отопления дома с ТН воздух – вода, напрямую зависит от этого параметра.

Дополнительно, к параметрам при выборе, обращают внимание на мощность оборудования, компанию производителя, выпускающую теплонасос и себестоимость установки, включая проведение монтажных работ

Как сделать расчет необходимой мощности ТН воздух-вода

Существует два понятия, предварительный (в первом приближении) и проектный расчёт мощности. Первый можно выполнить самостоятельно, второй делает специализированное учреждение. В первом приближении, на каждый квадратный метр рассчитывают 70 Вт мощности ТН. Дальнейшие расчеты выполняют следующим образом:

  1. Подсчитывают общую отапливаемую площадь.
  2. Умножают полученную сумму на 0,7.
  3. Полученный результат будет соответствовать минимально необходимой мощности оборудования.

Чтобы обеспечить максимальную экономичность отопления дома с помощью теплового насоса системы воздух-вода, потребуется грамотная проектная документация и квалифицированное выполнение монтажных работ.

Производители тепловых насосов отопления воздух-вода

Буквально 10 лет назад, на рынке предлагались всего несколько моделей тепловых насосов. Сегодня выбор стал намного больше. Ведущие немецкие производители, российские, японские и китайские компании, выпускают оборудование, с той или иной долей теплоэффективности.

Судя по отзывам покупателей, наиболее востребованными являются насосы следующих компаний:

  • Viessmann – более 30 лет занимается выпуском тепловых насосов. С тех пор, продукция компании существенно изменилась. Были учтены пожелания потребителей, внедрены новые технологии. В ТН Viessmann используется инновационная автоматика, полностью регулирующая весь процесс работы, оптимизирующая процесс обогрева, в согласии с погодными условиями.
  • Buderus – модели отличаются высокой производительностью. Предназначены для бытового и промышленного применения. Полностью соответствуют особенностям отечественной эксплуатации. В серии Buderus предлагаются насосы для обогрева площади до 500 м² и выше.
  • Stiebel Eltron – еще одна немецкая компания, пользующаяся неизменным спросом у отечественного потребителя. В качестве достоинств можно выделить большой ассортимент предлагаемого оборудования, функциональность устройств и возможность подбора по индивидуальным запросам. Модели Stiebel Eltron имеют высокий уровень СОР и отличаются экономичностью.
  • Heliotherm – австрийские теплонасосы, имеющие один из лучших показателей СОР среди всего термального оборудования. Имеют официальное представительство в РФ, что во многом облегчает монтаж, обслуживание систем и выполнение гарантийных обязательств. Теплонасосами Heliotherm оснащены более 15 000 различных объектов.

Стоимость установки ТН воздух-вода

Последние модели тепловых насосов обойдутся в 160-1200 тыс. руб. Цена варьируется, в зависимости от производителя. На стоимость сильно влияет «раскрученность» бренда. Китайские модели, имеют меньшую цену, но и уступают по надежности и показателям СОР.

Монтаж теплонасосов воздух-вода обычно входит в стоимость. Большинство производителей, дополнительно, бесплатно делают проект и предоставляют другие услуги по обслуживанию. Рассчитать полную стоимость, включая покупку ТН и его установку можно с помощью он-лайн калькуляторов.

Со встроенным ТЭНом

Часто во время производства изготовители дополнительно встраивают в теплонасосы электрические нагреватели. Это позволяет при необходимости переходить на альтернативный для термонасоса источник энергии — электричество.

Это объясняется следующими факторами. Выбор теплонасоса для отопительной системы производится с учетом разных параметров, в частности и особенностями климата конкретного региона. Причем является нецелесообразным монтировать оборудование с избыточной мощностью. Просто экстремальные заморозки случаются редко.

Как показала практика, самым экономным способом «добрать» в эти холодные дни требуемую мощность — это электроэнергия. Это дешевле, чем изначально монтировать насос повышенной мощности. Наличие электрического нагревателя позволяет исключить необходимость устанавливать более мощный насос, чем это необходимо.

Для хозяев грунтовых или водяных теплонасосов установленный ТЭН не является необходимостью. Совершенно по-другому происходит ситуация с воздушным оборудованием. При температуре -17C этот насос будет малопроизводительным. Установка дополнительного теплового генератора в этом случае целесообразна.

Поделитесь в социальных сетях:ВКонтактеFacebookX
Напишите комментарий