Работа солнечных батарей и контроллеров в пасмурную погоду

Устройство и принцип работы

В настоящее время солнечные преобразователи изготавливаются  преимущественно из кремния. Различают два вида современных технологий, на основе которых работают батареи. Первая это поликристаллическая и монокристаллическая. Поликристаллическая более дешевая и как следствие менее эффективная технология. Монокристаллическая более дорогая, что связанно в основном с трудоемкой технологией производства, а точнее выращивания, монокристаллов.

Несмотря на большую стоимость по сравнению со своим собратом, такая солнечная батарея дает больше электроэнергии и срок службы ее значительно дольше. Что в совокупности делает монокристаллический солнечный модуль наиболее привлекательным для применения его в повседневной жизни.

Работа солнечного элемента связана с его конструкцией. Состоит он из внешних пластин, выполненных из кремния, с разными свойствами проводимости и внутреннего слоя, состоящего из чистого  монокристаллического кремния. Внутренний слой обладает определенной проводимостью. Такую проводимость металла в физике называют еще дырочной проводимостью.  Один из внешних проводников тоньше противоположного слоя и покрыт специальным слоем, образующим цельный металлический контакт.

Список электропродуктов можно посмотреть тут.

При попадании на один из внешних слоев солнечного света образуется фотогальванический эффект. Он приводит к образованию в этом слое свободных электронов. Эти частицы получают дополнительную энергию и способны преодолеть внутренний слой элемента. Его называют барьером. Чем больше объем солнечного света, тем интенсивнее происходит процесс прохождения или перепрыгивания частиц от одной внешней пластины к другой, минуя внутреннюю перегородку. При замыкании внешних пластин появляется напряжение. Та пластина, которая интенсивно отдает частицы, образуя в себе так называемые дырки, приобретает знак минус. А принимающая пластина — знак плюс.

Функциональность солнечных батарей в пасмурную погоду или зимой

Работа солнечных батарей — уникальное явление. Это замечательное изобретение человечества. Но что делать, если основным атрибутом работоспособности такой батареи это наличие солнечного света. Зимой и осенью природа не балует нас теплом. За окном приходиться наблюдать в основном пасмурную или дождливую погоду.

Как показывает опыт работы солнечных панелей в зимнее время, коэффициент выработки энергии уменьшается почти в пять раз. А если учесть, что производительность этих батарей в принципе ниже стандартных источников энергии. То это все делает солнечные батареи почти бесполезными зимой.

В довершение ко всему можно отметить трудоемкость обслуживания панелей в зимнее время года. Это усугубляется периодически выпадающим снегом.

Кстати что касаемо осадков, дождь это полбеды, а вот снег, который налипает на рабочие плоскости батарей, придется еще и чистить.

Причем следует чистить очень аккуратно и тщательно. Поскольку каждая царапина или любое другое механическое повреждение отдельных блоков снижает эффективность панели в целом. Про осадки в виде града можно даже не вспоминать. Потому что они влекут за собой не просто низкую выработку электричества, но и механические повреждения модулей и дальнейшие затраты на их восстановление.

И все же, можно увеличить выработку электроэнергии в пасмурный период. Зимой очень востребованы специализированные аппараты слежения за солнцем, позволяющие моноблоку находиться постоянно под нужным углом к солнцу. Это необходимо, потому что при отклонении поверхности солнечной батареи от солнечных лучей производительность  уменьшается. И чем больше угол, тем меньше электроэнергии поступает к источнику. Такие аппараты называются гелиостаты.

Из всех особенностей, использования солнечных батарей в зимнее время года, можно отметить только один плюс, это постоянное охлаждение панели. Дело в том, что нагрев пагубно влияет на выработку тока, поэтому зимой можно не задумываться о наличии специальных охладительных систем.

Сфера применения

Есть три направления использования солнечной энергии:

  • Экономия электроэнергии. Солнечные панели позволяют отказаться от централизованного электроснабжения или уменьшить его потребление, а также продавать излишки электричества электроснабжающей компании.
  • Обеспечение электроэнергией объектов, подведение к которым линии электропередач невозможно или невыгодно экономически. Это может быть дача или охотничий домик, находящийся далеко от ЛЭП. Такие устройства используются также для питания светильников в отдаленных участках сада или автобусных остановках.
  • Питание мобильных и переносных устройств. При походах, поездках на рыбалку и других подобных мероприятиях есть необходимость зарядки телефонов, фотоаппаратов и прочих гаджетов. Для этого также используются солнечные элементы.

Рейтинг солнечных панелей

Увеличение спроса на фотоэлектрические модули привело к появлению огромного количества новых производителей на рынке. Обычному человеку сложно сделать правильный выбор в пользу той или иной модели. Предлагаем познакомиться с рейтингом лучших солнечных панелей:

  1. Trina Solar;
  2. Jinko Solar;
  3. Canadian Solar;
  4. Seraphim;
  5. JA Solar;
  6. Panasonic;
  7. SunTech;
  8. LONGi Solar;
  9. ABi-Solar;
  10. Risen Solar.

Независимо от того, что солнечные панели российского производства пока не вошли в перечень лучших, они выпускаются в большом количестве и постепенно отвоевывают рынок на родине. Каждому покупателя решать в индивидуальном порядке, на какой фирме остановить выбор. Это может быть отечественный производитель или зарубежный, все зависит от финансового состояния и выдвигающихся требований.

Обустройство системы отопления

В настоящее время набирает популярность инновационные отопительные системы, работающие на основе солнечных преобразователей. Это самостоятельные устройства с уникальными конструктивными и техническими параметрами, отличающимися от солнечных батарей.

В качестве основного рабочего элемента для отопительных систем используется коллектор, который принимает солнечный свет и автоматически преобразовывает его в кинетическое электричество. Площадь такой части варьируется от 30 до 70 квадратных метров. Чтобы зафиксировать коллектор нужно применять дополнительную технику, а для соединения пластин между собой используются металлические контакты.

Следующий компонент системы солнечного отопления — накопительный бойлер. Он обеспечивает эффективную трансформацию кинетической энергии в тепловую, и вызывает нагревание жидкости, объёмом до 300 литров. В некоторых случаях для поддержания оптимальной температуры воды используются дополнительные котлы на сухом топливе.

Завершающим узлом подобной системы являются напольные и настенные элементы, где по медным трубам циркулирует подогретая вода. За счёт низкой температуры запуска батарей и равномерной теплоотдачи, прогрев помещения осуществляется достаточно быстро.

Чтобы понять, как работают системы отопления дома на солнечных панелях, необходимо более подробно рассмотреть принцип их действия.

Между температурными показателями коллектора и накопительного элемента формируется определенная разница. Теплоноситель, в роли которого используется вода с антифризом, стремительно циркулирует по системе, в результате чего образуется кинетическая энергия.

После прохождения жидкости через отдельные слои системы, полученная энергия становится теплом, которое и обогревает помещение. Из-за таких особенностей в доме всегда сохраняется оптимальный температурный диапазон независимо от времени суток и года. Кстати, рынок таких систем постоянно расширяется, поэтому в ближайшем будущем они будут доступны для каждой среднестатистической семьи.

Что это такое?

Солнечная батарея – это далеко не один прибор, как представляют себе многие обыватели, а несколько компонентов, которые в совокупности могут преобразовывать энергию лучей солнца в электрическую энергию.

Солнечная электростанция работает бесшумно, не выделяет вредных компонентов и электроэнергия, генерируемая ею – совершенно бесплатна. Срок службы солнечных панелей может составлять до 25-30 лет. Но для успешной эксплуатации всего комплекта необходимо предварительно представить себе целесообразность данной покупки, учесть множество параметров при выборе нужных солнечных батарей.

Рассмотрим, что входит в обычный комплект для электрификации дачного домика.

  • Солнечные панели. Их количество порою может быть совершенно разным в зависимости от поставленных задач. Соединение может быть как последовательным, так и параллельным. Это напрямую будет зависеть от того, какое именно напряжение потребуется для инвертора.
  • Контроллер заряда. Он включается в цепь между аккумулятором и солнечными панелями последовательно. Его роль заключена в качественном обеспечении постоянного напряжения на инверторе.
  • Инвертор. Необходим для преобразования тока. Его нужно подключать параллельно к имеющимся аккумуляторам.
  • Аккумуляторы – тоже могут существенно отличаться друг от друга.
  • Провода, различные разъемы и другие дополнительные детали.

Цели использования

Если Вы покупаете солнечные батареи для дома, стоимость готового комплекта будет зависеть от целей, для которых приобретается СЭС. Таковых может быть три:

  1. Обеспечение полной автономности снабжения электроэнергией загородного дома или дачи. Особенно актуально решение этой проблемы там, где классические электросети отсутствуют либо подают энергию с перебоями.
  2. Желание использовать альтернативный источник питания не только для освещения, но и для обогрева, чтобы не зависеть от сезонного включения/выключения центрального отопления.
  3. Получение возможности заработать на продаже государству избытков.

Любой из этих вариантов предпочтительнее зависимости от государственной политики формирования цен на электричество и качества работы изношенных электросетей.

От чего зависит эффективность солнечных батарей

Эффективность работы панелей в ненастную погоду во многом зависит от материала, из которого они изготовлены.

Батареи из аморфного кремния лучше поглощают рассеянный свет, чем монокристаллические и поликристаллические панели. Поэтому для регионов с преобладанием пасмурных дней целесообразнее использовать именно кремниевые панели.

Кроме того, на результативность солнечной батареи влияет фактура поверхности – панели из рифленого стекла успешнее улавливает боковой свет. А оптимальным является волнообразный рельеф, с ярко выраженными выступами и впадинами. Рельефная поверхность способна увеличить производительность батареи на 5-10%.

Солнечные батареи за стеклом


Часто нас спрашивают, насколько снизится выработка солнечных батарей, если их установить за стеклом — внутри балкона, веранды и т.п. Многие дачники боятся, что установленную снаружи солнечную батарею украдут. Некоторые пытаются сделать установку солнечных батарей неприметной.

В солнечных панелях применяется специальное стекло с повышенной прозрачностью, которая достигается пониженным содержанием железа в стекле, но даже оно снижает мощность солнечной панели на несколько процентов. Как видно из таблицы выше, оконное стекло в один слой снижает выработку солнечной панели на 9%, а двойное стекло — на 16%. Это при условии, что эти стекла — идеально чистые и солнечные лучи падают на них перпендикулярно. В реальности же стекла бывают пыльными или даже грязными, что дополнительно снижает их прозрачность. При падении солнечных лучей под углом, отличным от 90 градусов, на передней и задней поверхности каждого стекла возникают переотражения, которые также отводят солнечные лучи от солнечного элемента. Поэтому мы не рекомендуем устанавливать солнечные батареи за оконными стеклами.

Солнечные батареи за стеклом на балконе

Эта статья прочитана 4935 раз(а)!

Какие солнечные модули работают лучше при пониженной освещенности и рассеянном свете?

В спецификациях на солнечные модули указаны параметры при STC (стандартных тестовых условиях). Реальные условия эксплуатации могут значительно отличаться от STC.  Обычно солнечные батареи в России работают при освещенности ниже, чем 1000 Вт/м² и погода бывает облачная или даже пасмурная. Солнечные модули разных типов и даже одного типа, но разных производителей работают по-разному в реальных условиях эксплуатации. 

Поэтому возникает вопрос — какие солнечные модули лучше купить, чтобы они работали наиболее эффективно при облачной погоде и рассеянном свете? Основным параметром, который нам важен при оценке эффективности солнечных батарей, является количество вырабатываемой энергии за промежуток времени (сутки, неделю, месяц, год).  Какие же модули вырабатывают больше энергии при малой освещенности? Рассмотрим основные типы модулей — монокристаллические, поликристаллические, тонкопленочные аморфные кремниевые, монокристаллические PERC модули — это основные модули, представленные сейчас на российском рынке.

Часто задают вопрос — какие модули работают лучше при облачной погоде и рассеянном свете? При пониженной освещённости и частичном затенении лучше работают тонкопленочные модули. Также, лучше чем обычные моно и поликристаллические модули при пониженной освещённости работают модули, изготовленные по технологии PERC (у нас в ассортименте есть такие модули).

Для стандартных модуле точно сказать, какой модуль — монокристаллический или поликристаллический — будет больше вырабатывать в облачную погоду нельзя. Тут все зависит от качества производителя. Только брендовые модули будут гарантировать максимальную выработку при различных условиях работы. Обязательно смотрите, присутствует ли производитель или бренд в списке модулей, которые прошли тестирование независимой лаборатории на параметра PCT

Дешевые модули делаются со стеклом без антибликового покрытия (один из популярных в России поставщиков продает именно такие модули). Они выдают заявленные параметры при тестировании на заводе, когда модули облучаются под прямым углом к плоскости. Но как только угол падения солнечных лучей становится не перпендикулярным поверхности элемента, значительная часть солнечного света отражается некачественным стеклом.  Также, очень плохо такие модули работают и на рассеянном свете. В итоге выработка энергии таким модулем может быть меньше раза в 2 по сравнению с выработкой энергии модулем такой же номинальной мощности, но сделанным известным брендом и производителем, отвечающим за свое качество.

Особенности работы в условиях холода

Если речь идет о фотоэлектрических элементах, энергию они производят и в зимнее время. Тот же вопрос можно отнести и к солнечным коллекторам. Одна из их основных задач — нагрев воды. Будут ли функционировать солнечные батареи зимой, как работают коллекторы в условиях холодов и морозов? Конечно, энергии мы получим гораздо меньше — по причине больших тепловых потерь как в самом коллекторе, так и в его трубах, которые обеспечивают его соединение с аккумуляторным баком. И если летом можно получить до 90% энергии, необходимой для горячего водоснабжения, зимой эта цифра падает до 25%.

При эксплуатации коллектора необходимо контролировать, чтобы трубки, через которые поступает жидкость, не замерзали. В действительности такой коллектор способен нагреть воду до +10-15°С и в мороз до минус 30°С, а дальнейшее нагревание уже делается с помощью других агрегатов.

При проживании в регионах с мягкой, но снежной зимой также нужно следить за тем, чтобы панели не было занесены снегом. В противном случае, они не смогут работать вообще.

Именно поэтому чаще всего их установка осуществляется только вертикально и на том месте, где присутствует сильный ветер. Небольшие объемы снега можно счищать обыкновенной щеткой.

В целях уменьшение теплопотерь аккумуляторные баки, соединенные с коллектором, рекомендуется устанавливать в теплом помещении. Таким образом, терять энергию система будет только в трубах, которые находятся снаружи

Важно иметь в виду, что они обязательно нуждаются в утеплителе. Это поможет сохранить еще больше тепла, поступающего в дом

Виды

Различают следующие виды батарей:

  1. Кремниевые. В свою очередь разделяются на моно-, мульти- и поликристаллические. Друг от друга отличаются технологией изготовления, небольшой разницей КПД (от 15 до 19%) и стоимостью изготовления. Наиболее популярный вариант (поликристаллические) благодаря адекватному соотношению цены и качества.
  2. Тонкопленочные. Батареи промышленного применения. Используются в огромных солнечных “фермах”. Стоят дешевле кремниевых, но занимают много места и требуют узкоспециализированное сопроводительное оборудование (высоковольтные контроллеры и инверторы).
  3. Аморфный кремний. Элементы на базе “обедненного” (технологически не очищенного) кремния, имеют КПД не более 8%, стоят дешево, применяются редко.
  4. Теллурид кадмиевые (CdTe). Продвинутая пленочная технология, дешевле примерно на треть, КПД не более 11%.
  5. CIGS. Батарея из полупроводникового материала, изготовляющегося из меди, индия, галлия и селена. Наиболее перспективная сфера развития. КПД на нынешней стадии разработок составляет порядка 15%.

Правительственная помощь

Идя навстречу желаниям россиян, в правительстве рассматриваются соответствующие законопроекты, которые помогут развиваться альтернативной энергетике, а именно, солнечные батареи ночью снабжающие электричеством.

Одним из них является тот, который разрешит продавать излишки аккумулированной энергии государству.

В Австралии, Швеции, Германии владельцы дополнительных источников энергии не только ее получают для себя практически бесплатно, но и продают излишки в городскую сеть. Тем самым, в выигрыше оказываются обе стороны.

Рекомендуем:

  • Yingli Solar: обзор, стоимость, недостатки и плюсы, цена
  • Монокристаллические солнечные панели лучше, сравнение с аналогами, достоинства, цена: ТОП-6
  • Двухсторонние солнечные батареи: преимущества, устройство, цена

Поскольку, как говорилось, солнечные батареи ночью для россиян пока дело новое, многие колеблются, сомневаясь в эффективности такого источника, поскольку на огромной территории России в течение года чаще бывает погода пасмурная с обильными осадками. Как в таких условиях будут себя вести солнечные батареи днем и как ночью?

Эффективность для отопления частного дома

Большой интерес представляет собой использование подобного оборудования для отопления дома. Электричество — это отличный источник тепла. Многие дома имеют именно такую систему отопления. Нужно учитывать тот факт, что отопление частного дома с помощью такого источника целесообразно организовывать только для регионов с максимумом солнечной энергии. Для северных территорий, где бывают полярные ночи, потребуется другой подход. В этом случае рекомендуется совмещать использование солнечной энергии с другими типами отопления, например, газовым или отоплением на твердом топливе (печным).

Все дело в том, что эффективность таких батарей в пасмурную погоду низкая, что может вызвать недостаток тепла. Поэтому отопление с помощью энергии солнца, преобразованной в электрическую, не рекомендуется применять обособленно от других. Оптимально использовать их только для экономии денег, когда это возможно. Таким образом, можно сделать вывод, что использование солнечных батарей не всегда может в полной мере обеспечить оптимальные микроклиматические условия в помещении, обогреть дом, в силу этого данный вид энергии рекомендуется применять совместно с другими видами отопления.

Как работает солнечная батарея?

Солнечная энергия преобразуется в последовательно подключённых фотоэлементах. Рассмотрим принцип работы солнечной батареи на уровне фотоэлектрических элементов. Основой фотоэлемента является кристалл кремния. Соединения кремния очень распространены в природе. Самый известный – это оксид кремния или песок. Кристалл кремния можно упрощенно назвать большой песчинкой. Кристаллы выращиваются искусственно в лабораторных условиях. Обычно их получают кубической формы, а затем на пластины. Толщина этих пластин всего 200 микрон. Это в 3─4 раза толще волоса человека.

Принцип работы фотоэлемента

Мощность одного фотоэлектрического элемента маленькая, а напряжение составляет около 0,5 вольта. Поэтому их последовательно объединяют в батареи по 36 штук, чтобы получить на выходе 18 вольт. Это хватит для того, чтобы зарядить аккумулятор 12 вольт. Здесь ещё нужно учесть, что заявленное напряжение и мощность будут только при работе батареи с максимальной отдачей, что в реальных условиях редкость. Собранная батарея помещается подложку, закрывается стеклом и герметизируется. Используемое стекло должно пропускать ультрафиолет, поскольку солнечная батарея также преобразует и эту часть спектра. Собранные батареи могут объединяться друг с другом в последовательные и параллельные цепочки. Получается небольшая солнечная электростанция.

Сегодня солнечные батареи устанавливаются в своих домах и на дачах для экономии электроэнергии. Такие миниатюрные гелиосистемы работают круглый год. Главное, чтобы поверхность панелей была чистой и светило солнце. В ряде случаев их эффективность выше в морозный солнечный день, чем в летний. Это объясняется тем, что разогрев солнечных модулей несколько снижает эффективность их работы.

Гелиосистема: солнечные батареи и коллекторы

Что касается установки солнечных батарей, то здесь следует отметить следующие моменты:

  • Устанавливать панели нужно на южной стороне крыши, фасада или на участке стороной на юг;
  • Угол наклона соответствует значению широты вашего региона;
  • Рядом не должно быть объектов, отбрасывающих тень на солнечные батареи;
  • Поверхность панелей нужно регулярно очищать от грязи и пыли;
  • Желательно использовать системы с отслеживанием положения солнца.

Современные гелиосистемы пока не в состоянии полноценно обеспечивать дом энергией в пасмурную погоду. Но как часть комбинированной системы энергоснабжения дома они очень уместны.

Как соединять солнечные батареи?

Солнечная панель – это простой источник питания, как аккумулятор или батарейка. Поэтому, для них действуют все те же законы, что и для источников питания. Солнечные панели можно соединять с друг другом последовательно, параллельно или даже последовательно-параллельно. Более подробно про виды соединений источников питания читайте в этой статье.

Последовательное соединение

Вот так выглядит параллельное соединение солнечный панелей. В этом случае суммируется выдаваемая сила тока, а напряжение остается таким же


параллельное соединение солнечных панелей

Параллельное соединение

Если же вы хотите увеличить напряжение, то следует соединять панели последовательно. В этом случае у вас напряжения, получаемые с каждой солнечной панели будут суммироваться.


последовательное соединение солнечных панелей

Последовательно-параллельное соединение

Если вы хотите увеличить и напряжение и выдаваемую силу тока, то в этом случае соединяют панели последовательно-параллельно


последовательно-параллельное соединение солнечных панелей

Виды кремниевых батарей

Наиболее популярными являются кремниевые батареи. Они отличаются долговечностью и качественной работой. Их различают два вида: монокристаллические и поликристаллические.

Монокристаллические

Такой вид батарей относится к самым дорогостоящим, потому что они изготавливаются из высококачественных материалов при соблюдении сложного технологического процесса. Главным материалом служит слой из специально выращенных кристаллов кремния. Готовые панели представляют собой бруски с кремниевой решеткой темно-синего цвета с закругленными краями. В процессе производства модуль разрезают на более тонкие пластины.

В результате использования качественного сырья и сложного процесса производства кремниевые монокристаллические панели достигают наивысших показателей производительности (КПД до 25%), а также отличаются длительным сроком эксплуатации с минимальным процентом деградации (около 5% за 25 лет). Высокий показатель эффективности достигается за счет использования всей поверхности модуля, даже захватывая рассеянный солнечный свет.

Несмотря на дороговизну монокристаллических конструкций, они быстрее себя окупают. Кроме того, из-за высокой мощности и производительности их можно использовать в меньшем количестве, тем самым экономя на площади. Однако нужно постоянно за ними ухаживать, так как малейшее загрязнение или затемнение приводит к существенному снижению выработки.

Поликристаллические

В производстве поликристаллических модулей участвует несколько кристаллов. По своим качествам они уступают монокристаллическим. Во-первых, это связано с использованием низкокачественного кремния, а во-вторых, с более простым процессом производства. В их основу заложен материал, который получен при переработке непригодных монокристаллических батарей и залит в формы, поэтому батареи имеют неоднородный цвет синего оттенка.

В результате использования более дешевого сырья цена на поликристаллическую батарею ниже на 15-20%, но это сказывается и на общей эффективности. КПД поликристаллических модулей при соблюдении правил эксплуатации не превышает 18%.

Солнечные панели из поликристаллов довольно тонкие, но ввиду меньшей производительности их потребуется больше, чтобы обеспечить себя необходимым количеством энергии. Но, несмотря на существенные минусы, поликристаллические солнечные батареи пользуются большой популярностью. Это связано с тем, что они менее прихотливы к захватыванию солнечного света и работают с большей отдачей в пасмурную погоду. Кроме того, с каждым годом инженеры работают над повышением величины КПД поликристаллических модулей, что в скором времени приблизит их к показателю 20-22%.

Немного о батареях-чемпионах по КПД

Рекордсменом по коэффициенту полезного действия в гелиосистемах на данный момент считаются немецкие батареи. Они созданы в Институте гелиоэнергетики им. Фраунгофера. В их основу положены фотоэлементы, состоящие из нескольких слоев. Компания «Сойтек» активно внедряет их в сферу широкого потребления, начиная уже с 2005 года.

Сами элементы — не более 4 мм толщиной, а солнечный свет фокусируется на их поверхности с помощью специальных линз. Благодаря им осуществляется преобразование световых частиц в электроэнергию, а КПД при этом составляет целых 47%.

Второе место заслуженно занимают панели, созданные путем применения фотоэлементов из трех слоев фирмы «Шарп». Это тоже солнечные батареи с высоким КПД, хотя и немного меньше — 44%.

Три слоя представлены тремя веществами: фосфидом индия (галлия), арсенидом галлия и арсенидом индия (галлия). Между ними располагается диэлектрическая прослойка, применяемая для того, чтобы получить туннельный эффект. Что касается фокусировки света, ее получают путем применения известной линзы Френеля. Концентрация света достигается до уровня в 302 раза, а далее попадает в трехслойный полупроводниковый преобразователь.

Безусловно, подобный рекорд КПД едва ли может быть доступен широкому кругу потребителей. Кстати, Илон Маск, известный американский миллиардер, является владельцем компании «Солар Сити». Не так давно, в 2015 году, компания Маска разработала именно «потребительский» вариант солнечных батарей с коэффициентом полезного действия, превышающим 22%.

Разработки и многочисленные лабораторные опыты проводятся и по сей день. Можно быть уверенными в том, что такие технологии имеют большое будущее — в качестве экологичного альтернативного источника энергии.

Характеристики кремниевых солнечных батарей

Кварцевый порошок — это сырьевой материал для кремния. Данного материала на Урале и Сибири очень много, поэтому именно кремниевые солнечные панели есть и будут в большем обиходе, чем остальные подтипы.

Монокристалл

Монокристаллические пластины (mono–Si) содержат в себе синевато–темный цвет, равномерно размещенный на всей пластине. Для таких пластин применяется максимально очищенный кремний. Чем он чище, тем солнечные батареи имеют КПД выше и самую наибольшую стоимость на рынке таких устройств.

Преимущества монокристалла:

  1. Наивысший КПД — 17–25%.
  2. Компактность — задействование сравнительно с поликристаллом меньшей площади для развертывания оснащения в условиях тождества мощности.
  3. Износостойкость — бесперебойная работа выработки электроэнергии без замены основных комплектующих обеспечивается за четверть века.

Недостатки:

  1. Чувствительность к пыли и грязи — осевшая пыль не дает батареям работать со светом от светила и соответственно уменьшает КПД.
  2. Высокая цена равна увеличенному сроку окупаемости.

Так как mono–Si нуждаются в ясной погоде и лучах Солнца, панели устанавливаются на открытых местах и поднятые на высоту. Насчет местности, то предпочтение отдается местности, в которой ясная погода обыденность, а количество солнечных дней приближено к максимальному.

Поликристалл

Поликристаллические пластины (multi–Si) наделены неравномерным синим окрасом из–за разнонаправленности кристаллов. Кремний не настолько чист, как в используемых mono–Si, поэтому КПД несколько ниже, вместе со стоимостью таких солнечных батарей.

Положительные факты поликристалла:

  1. Коэффициент полезного действия 12–18%.
  2. При неблагоприятной погоде КПД лучше, чем у Mono–Si.
  3. Цена данного агрегата меньше, а сроки окупаемости намного ниже.
  4. Ориентация на солнце не принципиальна, поэтому можно размещать их на крышах различных строений.
  5. Длительность эксплуатации — эффективность поглощения энергии и аккумулирования электричества падает до 20% спустя 20 лет непрерывной эксплуатации.

Недостатки:

  1. КПД уменьшен до 12–18%.
  2. Требовательность к месту. Для развертывания нормальной станции выработки электроэнергии нужно больше места, чем при задействовании батареи из монокристалла.

Аморфный кремний

Технология производства панелей существенно отличается от предыдущих двух. В приготовлении задействованы горячие пары, опускающиеся на подложку без образования кристаллов. При этом используется меньше производственного материала и это учитывается при формировании цены.

Преимущества:

  1. Коэффициент полезного действия — 8–9% во втором поколении и до 12% в третьем.
  2. Высокий коэффициент полезного действия при не совсем солнечной погоде.
  3. Возможность использования на гибких модулях.
  4. Эффективность батарей не падает вниз при повышении температуры, что позволяет монтировать их на всякие поверхности с нестандартной формой.

Основным недостатком можно считать меньший КПД (если сравнивать с иными аналогами), в связи с чем требуется большая площадь для получения сопоставимой отдачи от оборудования.

Возможно ли полноценное обеспечение энергией и теплом зимой

Солнечные батареи не способны полностью обеспечить владельца энергией и теплом в холодное время года. Однако частично они могут помочь сэкономить расходы на электричество. Рассчитывать на полноценное электроснабжение с их помощью нельзя. Но они с лихвой могут окупить свою стоимость в течение ближайших десяти лет.

Кстати, на Дальнем востоке зимой уровень солнечной радиации значительно выше летнего, поэтому там возможна колоссальная экономия электричества при использовании солнечных аккумуляторов круглый год.

Итак, этот спорный, но во многом оправдывающий себя альтернативный источник энергии вполне может стать хорошим помощником в быту. Однако перед тем, как серьезно задуматься над приобретением солнечных панелей, следует изучить как специфику их работы в разное время года, так и особенности их устройства.

Заключение, выводы, рекомендации

На основании всего вышесказанного можно сделать заключение о том, что в современном мире идут поиски альтернативных источников энергии. Перспективным направлением является солнечная энергетика, которая основана на использовании солнечных батарей. Стандартная солнечная установка состоит из следующих основных частей: обыкновенного преобразователя, преобразователя постоянного тока в переменный, механизма отбора мощности, аккумулятора и аппарата, регулирующего уровень зарядки и разрядки.

Эффективность подобного оборудования зависит от нескольких факторов. Самый важный из них — активность солнечной энергии и мощность батареи. Наиболее оптимальными являются аппараты с мощностью от 13,5 кВт, что может обеспечить практически бесперебойную работу всего оборудования. Для северных регионов нашей страны использование батарей не является перспективным. Рекомендуется применение их в качестве дополнительного источника электричества в целях экономии средств. Целесообразно совмещать ее с центральным отоплением (на природном газе или твердом топливе). При возведении солнечных станций нужно учесть большие затраты на оборудование. Окупаемость может составить десятки лет.

Поделитесь в социальных сетях:ВКонтактеFacebookTwitter
Напишите комментарий