Тепловая мощность: эффективность нагревателей и определение, расчёт баланса отопления и формулы, рекомендации

У каких радиаторов отопления самая высокая теплоотдача

Что касается характеристик металлов, то наименьшей теплоотдачей обладает сталь, а наибольшей –  биметалл (сочетание алюминия и стали).

МатериалТеплоотдача (Вт/м*К)
Сталь47
Чугун52
Алюминий202-236
Биметалл380

Однако это лишь свойства металлов, представляющие общую картину. Теплоотдача, в меньшей степени, но зависит и от межосевого расстояния, площади секции, технологии изготовления. Поэтому мы рекомендуем рассмотреть эффективность каждого вида радиатора в целом, а затем сравнить конкретные наиболее удачные модели, выбрав самые эффективные из них.

Биметаллические

Germanium NEO BM 350.

В среднем показатель теплоотдачи биметаллических радиаторов является самым высоким. В зависимости от модели – от 140 Вт до максимальной на рынке мощности в 280 Вт на 1 секцию (модель Sira RS 800). Представляют из себя сочетание стальных проводящих каналов и алюминиевого оребрения, быстро нагреваются и сразу же отдают тепло.

Приборы рассчитаны на рабочее давление системы до 35 атм. Даже самые простые модели имеют срок службы не менее 20 лет. Стоимость за секцию 395-2190 руб.

Алюминиевые

Fondital Vision Innovatium 500.

Близкими к биметаллическим являются показатели теплоотдачи алюминиевых радиаторов отопления, некоторые дорогостоящие модели могут иметь более высокую мощность и эффективность, чем простые биметаллические приборы.

В зависимости от модели тепловая мощность может быть в пределах от 130 Вт до 220,9 Вт на 1 секцию (модель Roca Dubal-80). При высокой эффективности, они, в сравнении с биметаллическими, имеют много эксплуатационных нюансов

При выборе необходимо обращать внимание на рабочее давление, иногда оно не превышает даже 10 атм

Главным недостатком является необходимость поддержания определенной кислотности теплоносителя (воды), что сложно даже в частном доме, не говоря уже о квартире с центральным отоплением. В противном случае, уровень pH более 7,5 быстро разрушит приборы. Стоимость 1 элемента – от 350 до 1200 руб.

Стальные

Stelrad Compact 22-500.

Тепловая мощность стальных панельных батарей относительно небольшая, но оптимальная, особенно в соотношении цена-результат. Они быстро нагреваются, обладают лучшими конвекционными характеристиками (воздух прогревается заметно быстрее), но и быстро остывают. В зависимости от модели, теплоотдача равна 179-13 173 Вт (модель Kermi FTV 330930).

Показатель указывается для всего прибора (т.к

они не имеют секций), поэтому при выборе нужно обращать внимание на длину. Стоимость также имеет самый обширный диапазон – от  1300 до 60 000 руб за панель

Как грамотно выбрать стальные радиаторы отопленияВиды, критерии выбора, лучшие модели и цены

Чугунные

Модель МС-140.

Самую низкую теплоотдачу имеют чугунные радиаторы отопления – от 80 до 160 Вт на секцию (известные МС 140). Преимуществом и в то же время недостатком является низкая инерционность: прибор дольше других остывает, но это делает его неподходящим для точной регулировки климата автоматикой.

Чугунные батареи имеют большой объем теплоносителя и существенную массу. Однако чугун устойчив к любым перепадам давления в системе, загрязнениям теплоносителя, не поддается коррозии. Стоимость начинается от 500 рублей за секцию и может достигать 9 000 руб., если это декоративные иностранные высококачественные модели.

Расчет тепловой мощности: формула

Рассмотрим формулу и приведем примеры, как произвести расчет для зданий с разным коэффициентом рассеивания.

Vx(дельта)TxK= ккал/ч (тепловая мощность), где:

  • Первый показатель «V» – объем рассчитываемого помещения;
  • Дельта «Т» – разница температур – это та величина, которая показывает насколько градусов внутри помещения теплее, чем снаружи;
  • «К» – коэффициент рассеивания (его еще называют «коэффициент пропускания тепла»). Величина берется из таблицы. Обычно цифра колеблется от 4 до 0,6.

Примерные величины коэффициента рассеивания для упрощенного расчёта

  • Если это неутепленный металлопрофиль или доска то «К» будет = 3 – 4 единицы.
  • Одинарная кирпичная кладка и минимальное утепление – «К» = от 2 до 3-ёх.
  • Стена в два кирпича, стандартное перекрытие, окна и
  • двери – «К» = от 1 до 2.
  • Самый теплый вариант. Стеклопакеты, кирпичные стены с двойным утеплителем и т. п. – «К» = 0,6 – 0,9.

Более точный расчет можно произвести, высчитывая точные размеры отличающихся по свойствам поверхностей дома в м2 (окна, двери и т. д.), производя расчёт для них отдельно и складывая получившиеся показатели.

4 Расчетные тепловые нагрузки школы

Расчет нагрузок на отопление

Расчетную часовую тепловую нагрузку
отопления отдельного здания определяем
по укрупненным показателям:

Qo=η∙α∙V∙q∙(tп-to)∙(1+Kи.р.)∙10-6
(3.6)

где - поправочный
коэффициент, учитывающий отличие
расчетной температуры наружного воздуха
для проектирования отопленияtoотto= -30 °С, при которой определено
соответствующее значение, принимается
по приложению 3 , α=0,94;

V- объем здания по наружному
обмеру,V=2361 м3;

qo
удельная отопительная характеристика
здания приto= -30 °, принимаемqo=0,523
Вт/(м3∙◦С)

tп— расчетная температура воздуха
в отапливаемом здании, принимаем 16°С

tо— расчетная температура наружного
воздуха для проектирования отопления
(tо=-34◦С)

η- КПД котла;

Kи.р — расчетный коэффициент
инфильтрации, обусловленной тепловым
и ветровым напором, т.е. соотношение
тепловых потерь зданием с инфильтрацией
и теплопередачей через наружные
ограждения при температуре наружного
воздуха, расчетной для проектирования
отопления. Рассчитывается по формуле:

Kи.р=10-2∙[2∙g∙L∙(1-(273+to)/(273+tн))+ω]1/2
(3.7)

где g- ускорение свободного
падения, м/с2;

L-свободная высота здания,
принимаем равной 5 м;

ω — расчетная для данной местности
скорость ветра в отопительный период,
ω=3м/с

Kи.р=10-2∙[2∙9,81∙5∙(1-(273-34)/(273+16))+3]1/2=0,044

Qo=0,91∙0,94∙2361∙(16+34)∙(1+0,044)∙0,39
∙10-6=49622,647∙10-6Вт.

Расчет нагрузок на вентиляцию

При отсутствии проекта вентилируемого
здания расчетный расход те плоты на
вентиляцию, Вт [ккал/ ч], определятся по
формуле для укрупненных расчетов:

Qв =
Vн∙qv∙( ti — tо ),
                                         
  (3.8 )

где Vн —
объем здания по наружному обмеру, м3
;

qv — удельная
вентиляционная характеристика здания,
Вт/(м 3·°С)
[ккал/(ч·м3·°С)], принимается по
расчету; при отсутствии данных по табл.
6 для общественных зданий ;

tj, —
средняя температура внутреннего воздуха
вентилируемых помещений здания, 16 °С;

tо, — расчетная
температура наружного воздуха для
проектирования отопления, -34°С,

Qв= 2361∙0,09(16+34)=10624,5

Определение количества теплоты
на ГВС

Qгвс=1,2∙M∙(a+b)∙(tг-tх)∙cpср/nc,
(3.9)

где M – расчетное количество потребителей;

a – норма расхода воды на
горячее водоснабжение при температуре

tг=
55 С
на одного человека в сутки, кг/(сут×чел);

b – расход горячей воды с
температурой tг=
55 С,
кг (л) для общественных зданий, отнесенный
к одному жителю района; при отсутствии
более точных данных рекомендуется
принимать b = 25 кг в сутки на одного
человека, кг/(сут×чел);

cpср=4,19
кДж/(кг×К) – удельная теплоемкость воды
при ее средней температуре tср =
(tг-tх)/2;

tх
температура холодной воды в отопительный
период (при отсутствии данных принимается
равной 5 С);

nc
расчетная длительность подачи теплоты
на горячее водоснабжение, с/сут; при
круглосуточной подаче nc=24×3600=86400
с;

коэффициент 1,2 учитывает
выстывание горячей воды в абонентских
системах горячего водоснабжения.

Qгвс=1,2∙300∙
(5+25) ∙
(55-5)
∙4,19/86400=26187,5
Вт

Несложные подходы к расчету по площади комнаты

Для того чтобы расчет количества секций радиатора по площади был произведен правильно, и в холодную погоду вы чувствовали себя комфортно в вашем доме, нужно, чтобы система отопления удовлетворяла два требования. Эти условия в какой-то степени зависят друг от друга, поэтому разделить их вряд ли получится.

Во-первых, поддержание требуемой температуры воздуха во всем отапливаемом помещении. Естественно, что температурные показатели могут слегка отличаться, однако эти отклонения должны быть минимальными. На практике весьма комфортным показателем средней температуры считается 20 ˚С – именно ее берут за эталон, перед тем, как рассчитать количество батарей в доме.

Проще говоря, отопительная система должна справляться с прогревом определенного количества воздуха.

Говоря о точности расчетов, проводимых для отдельных помещений, для жилых домов существуют стандарты микроклимата, их можно найти в ГОСТе 30494-96. Вся информация находится в соответствующих таблицах.

Для выполнения конкретных задач система отопления должна иметь заданную тепловую мощность. Поэтому она должна не только отвечать нуждам помещения, но и иметь корректное распределение, исходя из площади и целого перечня иных не менее важных нюансов.

Для того чтобы рассчитать сколько надо батарей в комнату как можно эффективнее, сначала высчитывают нужный объем тепловой энергии для всех помещений, а уже готовые значения складывают и набавляют приблизительно 10 % для запаса, чтобы оборудованию не приходилось работать на грани своих возможностей. По результатам можно будет судить, какой котел по мощности придется приобрести. А расчеты по каждой комнате потребуются для того, чтобы понять, сколько секций радиатора нужно на комнату.

Зачастую, в качестве нормы на 1 м2 площади берут 100 Вт тепловой энергии – это считается самым простым методом для тех, кто делает расчет мощности отопления по объему помещения своими руками.

Для просчетов пользуются формулой Q = S×100, где:

Q – искомая тепловая мощность для комнаты;

S – площадь комнаты(м²);

100 — удельная мощность на единицу площади (Вт/м²).

Метод является довольно простым. Формулой пользуются условно, когда высота потолков не превышает 2,5-3 м. Более точный результат можно получить, если обсчитывать объем помещения. В этом случае удельную мощность приравнивают к значению 41 Вт/м3 – если дом состоит из железобетонных панелей, и 34 Вт/м3 – для кирпичных и других сооружений.

Более совершенная формула выглядит так Q = S×h×41 (34), где:

h – высота потолков (м);

41 или 34 – удельная мощность на единицу объема (Вт/м³).

В результате мы получаем более точные измерения, потому как кроме линейных размеров помещения в расчет берутся и параметры стен.

Для чего нужен тепловой расчет?


Как умудрялись обходиться без тепловых расчётов строители прошлого? Сохранившиеся купеческие дома показывают, что всё делалось просто с запасом: окна поменьше, стены – потолще. Получалось тепло, но экономически не выгодно.

Теплотехнический расчёт позволяет строить наиболее оптимально. Материалов берётся ни больше – ни меньше, а ровно столько, сколько нужно. Сокращаются габариты строения и расходы на его возведение.

Вычисление точки росы позволяет строить так, чтобы материалы не портились как можно дольше.

Для определения необходимой мощности котла также не обойтись без расчётов. Суммарная мощность его складывается из затрат энергии на обогрев комнат, нагрев горячей воды для хозяйственных нужд, и способности перекрывать теплопотери от вентиляции и кондиционирования. Прибавляется запас мощности, на время пиковых холодов.

При газификации объекта требуется согласование со службами. Рассчитывается годовой расход газа на отопление и общая мощность тепловых источников в гигакалориях.

Нужны расчёты при подборе элементов отопительной системы. Обсчитывается система труб и радиаторов – можно узнать, какова должна быть их протяжённость, площадь поверхности. Учитывается потеря мощности при поворотах трубопровода, на стыках и прохождении арматуры.

При расчетах затрат тепловой энергии могут пригодиться знания, как перевести Гкал в Квт и обратно. В следующей статье подробно рассмотрена эта тема с примерами расчета.

Полный расчет теплого водяного пола приведен в этом примере.

Расход электрической энергии. Как его определить?

Нам потребуется некоторое количество расчётов, чтобы достичь необходимого результата.

Кроме того, расчёт требует учёта целого ряда параметров:

  • Среднесуточная длительность работы при максимальной нагрузке;
  • Режим проживания;
  • КПД и производительность;
  • Расчёт времени работы в отопительном сезоне;
  • Объём теплоносителя в контуре отопления;
  • Размер бака у прибора отопления;
  • Расчёт площади нагрева;
  • Напряжение устройства для отопления;
  • Расчёт сечение кабеля питания;
  • Расчёт объёма обогреваемых помещений;
  • Количество контуров в оборудовании.

Расчёт предполагает использование усреднённых значений. Требуется введение нескольких поправок на такие факторы, как тип используемой теплоизоляции, теплопроводность стен, температурные показатели и так далее. Мощность это тоже должна учитывать.

Электрический котёл отопления требует использования специального кабеля. Главным фактором при его выборе становится мощность. Здесь есть простая эмпирическая зависимость, понять которую не составит труда: не меньше мощности отопления, выраженной в кВт, должна быть площадь сечения кабеля в мм2 для однофазного электрического котла. Расчёт благодаря этому становится более простым. Необходимо согласовывать свои действия с инстанциями, осуществляющими контроль использования ресурсов, если показатель для котла находится на уровне 10 кВт и больше.


Рис. 2 Устройство изнутри

Что такое тепловой расчет?

Если говорить просто, тепловой расчёт помогает точно узнать, сколько тепла хранит и теряет здание, и сколько энергии должно вырабатывать отопление, чтобы поддерживать в жилье комфортные условия.

Оценивая теплопотери и степень теплоснабжения, учитываются следующие факторы:

  1. Какой это объект: сколько в нём этажей, наличие угловых комнат, жилой он или производственный и т. д.
  2. Сколько человек будет «обитать» в здании.
  3. Важная деталь – это площадь остекления. И размеры кровли, стен, пола, дверей, высота потолков и т. д.
  4. Какова продолжительность отопительного сезона, климатические характеристики региона.
  5. По СНиПам определяют нормы температур, которые должны быть в помещениях.
  6. Толщина стен, перекрытий, выбранные теплоизоляторы и их свойства.

Могут учитываться и другие условия и особенности, например, для производственных объектов считаются рабочие и выходные дни, мощность и тип вентиляции, ориентация жилья по сторонам света и др.

Расчет мощности котла по площади

Для отопления каждого 1 кв. м нужно создавать 100 Вт тепла. Расчёт по формуле:

где S является площадью дома,

k представляет собой коэффициент, определяющий потери тепла в зависимости от температуры воздуха за окном. Для регионов, в которых зимой температура воздуха не опускается ниже -10 °С, он составляет 0,7. Он растет по мере снижения градусов за окном. На каждые 5 °С он становится больше на 0,2. Для регионов, в которых зимой термометры показывают -35 °С, k составляет 1,2.

Если нужно отопить дом, который имеет площадь 115 кв. м и находится в зоне, где минимальная зимняя температура составляет -20 °С, то в нем нужно установить экономичный электрокотел с мощностью 115*1,1*100 = 12 650 Вт = 12,65 кВт.

Такой расчет не всегда является правильным потому, что на потери тепла влияет много факторов. Он подходит для дома, который имеет:

  1. Окна с двойным стеклопакетом и площадью не более 30% площади всех комнат.
  2. Среднюю теплоизоляцию (толщина стены равна длине 2 кирпичей, утеплитель толщиной в 15 см).
  3. Холодный чердак.
  4. Комнаты, высота которых равна 2,5 м.

Определение понятия тепловой мощности

Тепловая мощность оборудования напрямую зависит от количества потребляемой энергии котлом

Под мощностью тепловыделения понимается количество теплоты, образующееся при преобразовании исходного носителя в энергию обогрева. Этот показатель отличен по величине для разных видов энергоносителей и рассчитывается для каждого из них индивидуально. Для газовых котлов он зависит от объема природного или сжиженного газа, подводимого к горелке в единицу времени.

При рассмотрении электрических аналогов этот параметр напрямую связан с мощностью электроэнергии, потребляемой агрегатом от сети 220 или 380 Вольт и его тепловым КПД. Соотношение тепловых и электрических мощностей задается специальными формулами, переводящими одно значение в другое.

Как рассчитывается плата за горячее водоснабжение. Что такое ГВС нагрев

Начисление платы за горячее водоснабжение состоит из двух частей, или компонентов, каждый из которых выделен в квитанции отдельной строкой – ГВС и ГВС нагрев. Это связано с тем, что в домах Академического приготовление воды производится непосредственно управляющей компанией в индивидуальных тепловых пунктах каждого дома. В процессе приготовления горячей воды используются два вида коммунальных ресурсов – холодная вода и тепловая энергия.

Первый компонент, так называемая подача ГВС

– это непосредственно тот объем воды, который прошел через счетчик горячего водоснабжения и был потреблен в помещении за месяц. Либо, если не были сданы показания, или счетчик оказался неисправен или у него вышел срок поверки – объем воды, определенный расчетным путем по среднему или нормативу на количество прописанных.. Порядок расчета объема подачи ГВС точно такой же, как для холодного водоснабжения. Для расчета стоимости этой услуги применяется тариф на холодную воду, так как у поставщика в данном случае закупается именно холодная вода.

Второй компонент, ГВС нагрев

— это количество тепловой энергии, которое было затрачено на то, чтобы нагреть объем предоставленной в квартиру холодной воды до температуры горячей. Это количество определяется, исходя из показаний общедомового счетчика тепловой энергии.

В целом размер платы за горячее водоснабжение рассчитывается по следующей формуле:

Piгв = Vпгвi × Tхв + qvкр × Vпгвi × Tvкр

где:

Vпгвi — объем горячей воды, потребленной за расчетный период (месяц) в квартире или нежилом помещении

Tхв — тариф на холодную воду

qvкр — удельный расход тепловой энергии на подогрев воды

Vпгвi — суммарный объем горячей воды, потребленной за расчетный период во всех помещениях дома

Tvкр — тариф на тепловую энергию

Удельный расход тепловой энергии на подогрев воды определяется по формуле 20.1 ПП РФ от 26.12.2016г. №1498

qvкр= Vкр / (Qгв + Qот ) × Nтэгвс где:

Vкр — объем тепловой энергии по общедомовому прибору учета

Qгв + Qот — количество тепловой энергии, затраченное на отопление и подогрев воды во всех помещениях дома и на общедомовые нужды Nтэгвс — норматив расхода тепловой энергии, используемой на нагрев ГВС

Для домов Академического, с учетом их инженерных и конструктивных особенностей, величина qvкр равняется нормативу расхода тепловой энергии, и составляет:

— для домов с водяными полотенцесушителями: 0,05131

Гкал/м2

— для домов с электрическими полотенцесушителями: 0,04912

Гкал/м2

Распределение приборов

Если речь идет о водяном отоплении, максимальная мощность источника тепловой энергии должна равняться сумме мощностей всех источников тепла в здании.

Распределение приборов по помещениям дома зависит от следующих обстоятельств:

  1. Площадь помещения, уровень потолка.
  2. Положение комнаты в строении. Помещения в торцевой части по углах отличаются повышенными теплопотерями.
  3. Расстояние до источника тепла.
  4. Оптимальная температура (с точки зрения жильцов). На температуру помещения, помимо прочих факторов, влияет перемещение воздушных потоков внутри жилья.
  1. Жилые помещения в глубине строения — 20 градусов.
  2. Жилые помещения в угловых и торцевых частях здания — 22 градуса.
  3. Кухня — 18 градусов. В кухонном помещении температура выше, так как в ней присутствуют дополнительные источники тепла (электрическая плита, холодильник и т.д.).
  4. Ванная комната и туалет — 25 градусов.

Если в доме обустроено воздушное отопление, объем потока тепла, поступающий в комнату, зависит от пропускной возможности воздушного рукава. Регулируется поток ручной настройкой вентиляционных решеток, а контролируется — термометром.

Дом может обогреваться распределенными источниками тепловой энергии: электро- или газовые конвекторы, теплые полы на электричестве, масляные батареи, ИК-обогреватели, кондиционеры. В этом случае нужные температуры определяются настройкой термостата. В этом случае нужно предусмотреть такую мощность оборудования, которой бы хватало при максимальном уровне тепловых потерь.

Расчет тепловой мощности: формула

Рассмотрим формулу и приведем примеры, как произвести расчет для зданий с разным коэффициентом рассеивания.

Vx(дельта)TxK= ккал/ч (тепловая мощность), где:

  • Первый показатель «V» – объем рассчитываемого помещения;
  • Дельта «Т» – разница температур – это та величина, которая показывает насколько градусов внутри помещения теплее, чем снаружи;
  • «К» – коэффициент рассеивания (его еще называют «коэффициент пропускания тепла»). Величина берется из таблицы. Обычно цифра колеблется от 4 до 0,6.

Примерные величины коэффициента рассеивания для упрощенного расчёта

  • Если это неутепленный металлопрофиль или доска то «К» будет = 3 – 4 единицы.
  • Одинарная кирпичная кладка и минимальное утепление – «К» = от 2 до 3-ёх.
  • Стена в два кирпича, стандартное перекрытие, окна и
  • двери – «К» = от 1 до 2.
  • Самый теплый вариант. Стеклопакеты, кирпичные стены с двойным утеплителем и т. п. – «К» = 0,6 – 0,9.

Более точный расчет можно произвести, высчитывая точные размеры отличающихся по свойствам поверхностей дома в м2 (окна, двери и т. д.), производя расчёт для них отдельно и складывая получившиеся показатели.

Основы теплового расчета системы отопления

Тепловой расчет представляет собой стандартный документ. В него входят несколько этапов вычислений. Но для начала необходимо разобраться с самой отопительной системой и ее характеристикой.

Отопительная система представляет собой принудительную подачу и отвод тепла в квартиру

При составлении расчета важно наиболее точно вычислить теплопотери. Среди задач есть и определения количеств теплоносителя

К тому же важно правильно подобрать элементы системы отопления.

Цель теплового расчета:

  • Получить данные о тепловых потерях, мощности котла и насоса;
  • Определится с количеством и разновидностями батарей;
  • Иметь характеристики гидравлики трубопровода;
  • Узнать объем и скорость теплоносителя.

Тепловой расчет – необходимая информация, на которую стоит опираться на практике. Сначала собирают исходные данные о квартире. Дальше проводят расчет. С учетом полученной информации закупают и распределяют элементы системы отопления.

Теплосчетчики

В настоящее время в Государственном реестре средств измерений имеется больше двух сотен отечественных и зарубежных теплосчётчиков. Почти все они ориентированы на измерение у потребителей тепловой энергии и теплоносителя. К сожалению, эти теплосчётчики не совсем подходят для измерения на источнике тепловой энергии. Но пока приходится мириться с их недостатками, так как нет выбора.

Ниже приведены свойства теплосчётчиков, необходимые для их применения на источнике, но, как правило, отсутствующие у существующих сейчас теплосчётчиков.

  • Между теплосчётчиками отсутствуют сети передачи данных, что необходимо для передачи общестанционных параметров, измеряемых в одном месте (барометрическое давление, температура источников холодной воды, расходы подпитки), а используемых в алгоритмах учёта нескольких теплосчётчиков.
  • Отсутствует возможность применения расходомеров, раздельно измеряющих и учитывающих расход теплоносителя как в прямом, так и в обратном направлении.
  • Отсутствует ввод данных от датчиков и счётчиков по цифровым интерфейсам.
  • Отсутствует возможность автоматической синхронизации внутренних часов теплосчётчика со службой единого времени.
  • Отсутствует возможность опроса датчиков и передачи результатов измерений по каналам связи для целей технологического контроля с частотой не менее 1 Гц.
  • Отсутствует гальваническая развязка между входами УСО.
  • Не унифицированы интерфейсы связи теплосчётчиков с общестанционным вычислителем.

Точные расчеты тепловой нагрузки

Значение теплопроводности и сопротивление теплопередачи для строительных материалов

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

Расчет по стенам и окнам

Сопротивление теплопередачи стен жилых зданий

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м² ;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт ;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

Анатолий Коневецкий, Крым, Ялта

Анатолий Коневецкий, Крым, Ялта

Уважаемая Ольга! Извините,что обращаюсь к Вам еще раз. Что-то у меня по Вашим формулам получается немыслимая тепловая нагрузка: Кир=0,01*(2*9,8*21,6*(1-0,83)+12,25)=0,84 Qот=1,626*25600*0,37*((22-(-6))*1,84*0,000001=0,793 Гкал/час По укрупненной формуле, приведенной выше, получается всего 0,149 Гкал/час. Не могу понять, в чем дело? Разъясните пожалуйста! Извините за беспокойство. Анатолий.

Анатолий Коневецкий, Крым, Ялта

Поделитесь в социальных сетях:ВКонтактеFacebookX
Напишите комментарий